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1 Introduction

Since 1950, suburban counties have grown into major population centers, while urban cores have

experienced population decline. Alongside these shifts, suburban counties have also become key em-

ployment hubs, suggesting a role that extends beyond merely serving as residential areas. This spatial

reorganization of population and employment has had far-reaching consequences, contributing to envi-

ronmental degradation, reduced density, and increased city fiscal and maintenance burdens.1 However,

the forces driving the reorganization of population and employment remain debated.2 Much of the

debate centers on how the Interstate Highway System reduced commuting costs to urban centers,

facilitating suburban living by improving access to urban jobs (Baum-Snow, 2007). Yet, as I argue in

this paper, by reducing trade costs, highways also contributed to shifting jobs away from urban cores

to suburban employment hubs. In this context, the paper asks: To what extent did the construction

of the Interstate Highway System contribute to the growth of suburbs and the decline of urban cores

in the U.S.? How much of the effect of highways can be attributed to reduced trade costs beyond

reduced commuting costs?

I revisit the impact of the Interstate Highway System and offer a complementary view. I argue that

reductions in trade costs—alongside reductions in commuting costs—were pivotal in shaping suburban

growth and urban core decline. To this end, I highlight how trade linkages influence the effects of

highways on population and employment heterogeneously across urban categories (e.g., urban cores,

suburbs, rural, etc). For example, from Baltimore’s perspective, shorter driving times to New York

after the introduction of I-95 benefit firms in suburban areas along this route more than firms along

I-70 to Pittsburgh. This advantage stems from the relative sizes of New York and Pittsburgh: New

York’s sheer size provides firms along I-95 with access to a much larger market, making it easier for

them to sell their products. In contrast, firms along I-70 to Pittsburgh are closer to a smaller market.

Additionally, I-95 attracts new residents to Baltimore’s suburbs as their access to goods produced in

New York increases. This thought experiment illustrates how, as trade costs to New York decline,

both jobs and residents increasingly gravitate toward Baltimore’s suburbs along I-95.

By comparing the effects of trade cost reductions to those of commute cost reductions, I also

highlight a key conceptual distinction: trade cost reductions can influence bilateral relationships over

1See Brueckner (2000); Glaeser and Kahn (2004); Ewing et al. (2003).
2See Cullen and Levitt (1999) on crime; Boustan (2010) on racial tensions and white flight; Reber (2005) on schooling;

Baum-Snow and Hartley (2020) on amenity value, see Baum-Snow (2007) on highway construction.
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long distances, whereas commute cost reductions cannot. For instance, the significant distance between

Baltimore and New York makes commuting between the two cities impractical. As a result, any

potential influence New York might have on Baltimore’s suburban growth would occur through changes

in market access rather than commuting access. Put it differently, trade cost reductions create ‘pulling

forces’ that extend over greater distances (e.g., population and jobs from Baltimore’s core gravitating

toward its suburbs in the direction of New York), whereas commute cost reductions generate pulling

forces that operate over more limited distances.

To study these issues and answer my research questions, I proceed in two steps. First, I show

empirically that highways substantially reduced trade costs and commute costs between counties.

Second, I use the results of the empirical exercise to discipline a spatial general equilibrium model via

indirect inference. I quantify the role of highways in driving suburban growth and the decline of urban

cores, focusing on the reduction in trade costs, in addition to the reductions in commuting costs.

In the first step, I estimate the impacts of reducing trade and commute costs on population and

employment at the county level. I start by constructing a new data set with dated and georeferenced

placements of highways by mile. These data allow me to compute each decade’s bilateral driving times

between counties. Using these data, I leverage variation in highway construction dates and driving

time reductions to estimate how changes in access to employment centers (i.e., commuting access) and

in access to markets for shipping goods (i.e., trade access) affect both population and employment

growth in U.S. counties between 1950 and 2020. I find that a one standard deviation increase in trade

access leads to a 9.6% rise in population and an 11.8% increase in employment, while a one standard

deviation increase in commuting access results in only a 0.03% rise in population and a 1.5% rise in

employment.3 In other words, on average across counties—and regardless of whether they are suburbs

or not—trade cost reductions have a greater role than commute cost reductions in driving population

and employment growth. This result holds across a battery of robustness tests, including concerns

about the endogeneity of highway placement.

While trade cost reductions, on average, have a greater impact on population and employment

growth than commute cost reductions, the question remains whether trade cost reductions have driven

suburbanization and the decline of urban cores. To address this, in the second step, I use a quantitative

spatial model to separately identify the contributions of trade and commute costs to suburbanization.

3Standard deviations were calculated based on the distribution of trade and commute access improvements, respec-
tively.
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This model incorporates trade, commuting, migration, and externalities in production and amenities,

with tradable, non-tradable, and construction sectors.

Before discussing the model’s results, I first outline the calibration procedure. I focus on the in-

direct inference approach I employed to match the model’s population and employment responses to

reductions in commute and trade costs with the corresponding responses observed in the data. Central

to this calibration are the amenities externalities embedded in the model—specifically, scale external-

ities arising from the agglomeration of people leading to attractiveness gains. I argue that amenity

externalities amplify the effects of reduced trade and commute costs. For instance, when commuting

costs between Baltimore’s suburbs and its core decrease, people relocate to suburbs. This migration, in

turn, boosts suburban amenities through scale effects. As amenities improve, the attractiveness of the

suburbs increases. Thus, further reductions in trade costs, such as to New York, create even stronger

incentives for people to move to the suburbs, where the amenities have already been enhanced.

I estimate the parameters of the amenity externality function that allow the model to generate

population and employment responses as close as possible to those observed in the data. To model

amenities, I follow Bartelme, Li, and Velasquez (2024) and introduce a more flexible specification of

scale externalities that nests the standard specification. I refer to this framework as heterogeneous

amenity externalities, which contrasts with the conventional constant elasticity approach. Specifically,

I allow amenity externalities to be active only within a middle range of population sizes. By match-

ing the reduced-form effects of trade and commute access, I estimate the threshold at which these

externalities become inactive.4 Including heterogeneous amenity externalities gives the model greater

flexibility in matching the reduced-form effects of trade and commute access. While constant amenity

externalities can match population responses to either trade or commute access, they cannot account

for both simultaneously. The model can only match the population response to commute and trade

cost reductions with heterogeneous amenity externalities. The intuition is as follows: raw data reveals

that the reduction in commute costs was most significant in denser suburban areas. In contrast, trade

cost reductions were more prominent in less dense areas. To match the observed empirical fact that

improvements in commute access generate minimal population responses on average, amenity exter-

nalities must not be active in denser areas, where commute cost reductions were substantial. However,

4One interpretation of this approach is that congestion forces dominate in larger locations, while smaller locations
lack sufficient population to generate significant endogenous amenities. Meanwhile, TFP externalities, calibrated from
existing literature, remain constant, preserving the productivity advantages of large cities.
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to match the sizable population responses to reductions in trade costs, amenity externalities must

be active in less dense areas, where trade cost reductions were more pronounced. Empirically, I find

that amenity externalities become inactive in counties with populations above approximately 200,000.

Furthermore, the data does not support a constant elasticity framework, as I can confidently reject a

threshold ‘close to infinity’ for amenity externalities.

Once the model is calibrated to the U.S. economy, I use it to quantify the extent to which highways

contribute to suburban growth and urban core decline. I also use it to understand separately the

contributions of trade and commute costs to suburbanization while exploring their interaction. My

calibration emphasizes that the observed patterns of suburban growth and urban core decline can only

be understood by considering both trade and commute cost reductions. I simulate a counterfactual

scenario without the Interstate Highway System, holding constant all other shocks between 1960

and 2020. I evaluate three cases: highways reduce only commute costs, only trade costs, and both

simultaneously. Comparing observed data to the scenario where highways reduce trade and commute

costs, I find that highways account for 15% of suburban growth and 33% of urban core decline. When

highways reduce only commute costs, the model shows that these reductions account for 88% of the

highways’ impact on suburban growth. However, commute cost reductions alone do not explain the

decline in urban cores, as suburban expansion in this scenario is primarily driven by migration from

rural areas. In contrast, when trade cost reductions are added to the reductions in commute costs,

they explain the remaining 12% of the impact on suburban growth and account for the entire effect

of highways on urban core decline.

The intuition behind these results can be understood in three parts. First, when trade costs fall,

and commute costs remain unchanged, access to goods improves across long distances, making remote

areas more attractive. Thus, rural areas grow in response to trade cost reductions (as shown in a coun-

terfactual scenario where highways reduce only trade costs but not commute costs). Second, commute

cost reductions, with constant trade costs, decentralize activity over shorter distances: suburbs gain

better access to jobs in core cities. Rural areas, too remote to benefit from reduced commute costs,

lose out as suburbs grow at their expense due to stronger suburban-core connections. Finally, when

trade and commute costs decrease together, the combined effects steer growth toward suburbs. This

shift toward suburbs occurs because migration in response to the initial drop in commute costs boosts

local amenities in the suburbs, making them even more attractive when trade costs fall. Suburbs thus
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emerge as middle-ground hubs, benefiting from trade and commute access. The interaction between

cost reductions and amenities helps explain the observed data patterns—, where suburbs grow while

urban cores shrink.

In this research, I contribute to four strands of the literature. First, I advance the debate on

the causes of suburbanization.5 I argue that highways drive suburbanization not only by reducing

commute costs (Baum-Snow, 2007; 2020; Baum-Snow et al., 2017) but also by reducing trade costs

(Michaels, 2008; Faber, 2014; Duranton and Turner, 2014), which further accelerates suburbanization

and contributes to urban core decline. Furthermore, I highlight the importance of city networks in

shaping the trade access effects on suburbanization. Additionally, I offer a new quantification of

highway effects that considers not only cores and suburbs but also smaller cities and rural areas. With

a full geographical perspective, it becomes evident that commute cost reductions centralize activity

around core-suburb links and away from rural areas. However, simultaneous trade and commute cost

reductions are essential to explaining the observed suburban growth alongside core decline.

Second, I contribute to the empirical and theoretical literature evaluating the impact of new trans-

port infrastructure by examining the interaction between trade costs and commute costs.6 While most

studies focus on transport infrastructure’s effects on either trade or commute costs, I analyze both

dimensions jointly, using a combination of reduced-form and structural approaches. In the reduced-

form analysis, I use my new dataset of bilateral driving times to measure changes in market and

commuting access across U.S. counties. I show that, on average, improvements in commute access

have a negligible impact on population and employment growth across all counties, while improve-

ments in trade access drive significant growth in both outcomes. However, these aggregate results

mask important heterogeneity across locations. The structural analysis uncovers this heterogeneity by

separately characterizing the contributions of trade and commute access for each county, while match-

ing the average effects estimated in the reduced-form analysis. I find that improvements in commute

access are particularly influential in suburban areas, where they significantly drive population and

employment growth. Moreover, improvements in trade access amplify these effects, interacting with

commute access improvements to accelerate suburban expansion and the decline of urban cores.

5See Cullen and Levitt (1999) on crime; Boustan (2010) on racial tensions and white flight; Reber (2005) on schooling;
Baum-Snow and Hartley (2020) on amenity value, see Baum-Snow (2007) on highway construction.

6Trade: Michaels, 2008; Duranton et al., 2014; Faber, 2014; Allen and Arkolakis, 2014, 2023; Donaldson and Hornbeck,
2016; Donaldson, 2018; Monte et al., 2018; Sotelo, 2020; Baldomero-Quintana, 2024; Frye, 2024. Commuting: Baum-
Snow, 2007, 2020; Duranton and Turner, 2012; Monte et al., 2018; Heblich et al., 2020; Baum-Snow et al., 2020; Severen,
2021; Zarate, 2021; Warnes, 2021; Brinkman and Lin, 2022; Tsivanidis, 2023; Weiwu, 2023, 2024; Velasquez, 2024.
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Third, I contribute to economic geography models of trade and migration by exploring how mi-

gration amplifies the effects of changes in trade and commute access.7 My work builds on Monte et

al. (2018), who emphasize commuting patterns, by providing direct evidence of how shifts in trade

and commute access drive population and employment growth. I introduce amenity externalities, a

key factor regulating migration responses, to match the model’s predictions with observed patterns in

population and employment. I further examine how the interaction of trade, commuting, and migra-

tion drives suburbanization in the U.S., demonstrating that migration intensifies the effects of both

trade and commute access.

Fourth, there is a long tradition of research on scale externalities, commonly known as productivity

and amenity externalities.8 Some of this literature focuses on amenity externalities.9 I provide new

estimates of dynamic amenity externalities and evidence of heterogeneous amenity elasticities using

an indirect inference approach. Donaldson and Allen (2023) examine path dependence by showing

how dynamic amenity and production externalities can create multiple steady states. Bartelme, Li,

and Velasquez (2024) extend this framework by incorporating heterogeneous productivity elasticities,

showing how a temporary shock can have lasting impacts on mid-sized locations, but minimal effects

on large ones, when agglomeration economies are strong but concentrated in mid-sized areas. My

contribution lies in demonstrating that the heterogeneous scale externalities framework formulated

by Bartelme, Li, and Velasquez (2024) not only provides realistic calibrations in contexts where path

dependence is expected following temporary shocks. My work also shows that this framework can

produce realistic calibrations that match observed general equilibrium responses more effectively than

the constant scale formulation, even in contexts where path dependence may or may not be expected.

7Caliendo et al., 2019; Tombe and Zhu, 2019; Fan, 2019; Caliendo et al., 2021; Heiland and Kohler, 2022; Cai et al.,
2022; Pellegrina and Sotelo, 2024; Brinatti, 2024

8See Krugman (1991), Ciccone and Hall (1996), Glaeser and Maré (2001), Lucas and Rossi-Hansberg (2002), Duranton
and Puga (2004), Combes, Duranton, and Gobillon (2008), Allen and Arkolakis (2014, 2023) , de la Roca and Puga (2017),
Kline and Moretti (2014), Ahlfeldt, Redding, Sturm, and Wolf (2015).

9Bayer, Ferreira, and McMillan (2007), Diamond (2016), Leonardi and Moretti (2023), Almagro and Domı́nguez-Iino
(2024), De la Roca, Parkhomenko, and Velasquez (2024).
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2 Background, Data and Stylized Facts

2.1 Background and Data

Background. Though conceived in 1947 with a 37,324-mile plan—designed primarily for national

defense, not urban development—the Interstate Highway system did not truly materialize until the

Federal-Aid Highway Act of 1956 spurred construction of 42,800 miles of interconnected freeways in

many construction waves. By 1990, virtually all of the original plan was executed, transforming the

nation’s road network from limited-access miles to a vast, integrated grid. Crucially, many highways

were constructed following a “ray” pattern, connecting outlying areas directly to central city cores

(Baum-Snow, 2007). This reshaped the structure of U.S. cities by reducing commute times between

suburbs and urban cores. Similarly, highway segments connected many cities, effectively reducing

trade costs between U.S. markets (Duranton et al., 2014).

Data. I compile several datasets. To study population characteristics at the county level, I use

the Decennial Census and the American Community Survey Data (1950-2020).10 To document the

distribution of jobs, I rely on the County Business Patterns Database (1950-2020) by Eckert et al.,

(2021). To map out commuting flows over space and time, I rely on the Journey to Work Database

(1970-2020).

To construct bilateral driving times between counties, I utilize the 2005 Highway Performance

Monitoring System (HPMS), the PR-511 data set,11 and various historical and planned transportation

data. I merge PR-511 files with HPMS road data to georeference highway construction dates. Using

the Dijkstra algorithm and a speed of 70 miles per hour, I calculate bilateral commuting times between

county centroids for each decade from 1960 to 2000.12 I also compute driving times assuming highways

followed the exact paths of the 1947 Interstate plan, the 1920 Pershing Map, the 1528-1850 historical

routes of exploration, and railroads around 1898 (Baumsnow, 2007; Michaels, 2008; Duranton and

Turner 2012; Frye, 2023; Brinkman and Lin, 2024).13

After interpolating county-level data across decades and excluding Puerto Rico, Alaska, and other

10To have a consistent definition of census counties, I interpolate them using Eckert et al. (2020) crosswalks. Elsewhere,
I also rely on Census-tract level data. I interpolate census-tracts using crosswalks from Lee and Lin (2018) and the
Longitudinal Tract Data Base.

11The PR-511 data set identifies the year of construction of each highway segment (Baum-Snow, 2007; Baum-Snow,
2020; Weiwu, 2024).

12Centroids were determined using 2000s population density data from WorldPop.
13Procedures are detailed in Appendix A.3.
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islands, the final dataset includes 3,092 counties for each decade from 1950 to 2020.

County classification. I use the 1990 NCHS Urban-Rural Classification Scheme for counties. This

classification divides counties in large metropolitan areas (1 million+ population) into two groups:

“core” metro counties (those containing all or part of the largest central city) and “fringe” metro

counties (suburbs).14 It also includes medium metros (population 250,000–999,999), small metros

(50,000–249,999), and nonmetropolitan counties with cities (those with cities of 10,000 or more resi-

dents) and without cities (do not contain any part of a city of 10,000 or more residents).

This classification is ideal to study the spatial distribution of economic activity. First, the NCHS

scheme captures not just population size but also functional relationships—such as the distinction

between core and fringe counties in large metros—making it ideal for studying commuting patterns

and suburbanization trends. Second, by categorizing both metropolitan and non-metropolitan areas,

it allows for comparative analysis across a full continuum of urbanization, making it easier to assess

how suburban areas differ from cores, medium and small metros, and rural areas. Moreover, every

county in the U.S. is assigned a classification.

Figure 1: New York and Hartford

Notes: 2010 County shapefiles merged with 1990 NCHS Rural-Urban Classification.

14This refers to counties that either: (i) are in metropolitan areas of 1 million or more but are not classified as large
central metro, or (ii) are in areas with less than 1 million population but are adjacent to a large central metro county in
a neighboring metropolitan area.
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Figure 1 illustrates how the NCHS classification captures the spatial structure of metropolitan and

non-metropolitan areas, distinguishing between core, suburban, and smaller metro regions. The figure

shows the New York and Hartford metropolitan areas, highlighting how the scheme differentiates New

York’s core counties (e.g., New York, Kings, and Bronx) from suburban counties like Bergen and

Rockland. Similarly, we can differentiate Hartford’s core and fringe areas.

2.2 Stylized Facts

In this section, I highlight two key facts. First, suburbs have emerged as both employment and

population centers. This paper shows that this was, in part, due to reductions in commute costs,

and crucially, the fall in trade costs. Second, commuting to suburbs has grown. A key insight of this

paper is that lower trade costs decentralize jobs to suburbs. This effect intensifies when workers can

commute easily, enabling suburbs to scale up their workforce as demand for their goods rises when

trade costs are reduced. Therefore, it is essential to study trade, commuting, and migration together

to fully understand suburbanization in the U.S.

Fact 1: Suburbs emerged as population and employment centers at the expense of rural

and core counties, respectively.

Suburbs have emerged as major population and employment centers. Initially accounting for about

one-tenth, suburbs now represent roughly one-fifth of the total population and employment. However,

while population losses were primarily concentrated in rural areas, employment declines were more

pronounced in core counties.

Figure 2 shows the nationwide share of population (Panel A) and employment (Panel B) from

1950 to 2020 across different urban classifications as defined by the NCHS classification. I focus on

four groups: core, suburbs, medium metros and rural (which also include small metros). In Panel A,

population in suburbs rose from 12.6% to 21.6%. This shift was accompanied by a modest decrease

in core counties (31.7% to 29.4%), a significant decline in rural counties (from 36.7% to 26.1%), and

a modest rise in medium metros (18.9% to 22.9%). In contrast, in Panel B, the rise of employment in

suburbs (11.0% to 20.9%) coincided with a sizable decline in core counties (45.7% to 36.6%), a modest

decline in rural areas (22.8% to 20.1%) and rise in medium metros (20.4% to 22.3%).

These facts represent the phenomenon this paper explains through the reduction in commute and

trade costs driven by highway expansions.

9



Figure 2: Population and employment share out of the nationwide total

Panel A: Population Panel B: Employment

The y-axis shows the nationwide share of population or employment by classification according to the 1990 NCHS Urban-Rural Classification

Scheme for counties. Small metros and nonmetropolitan counties were pooled together. For example, Sharek,t =

∑
i∈k Popi,t∑S
i
Popi,t

, where S denotes

total number of counties, i indexes counties, and k indexes categories (e.g. “Fringe”). Population data comes from the Decennial Census and the

American Community Survey Data. Employment data comes from the County Business Patterns Database. To make sure counties definition over

time are consistent, I interpolate county level data using Eckert et al. (2020) crosswalks.

Fact 2: Suburban counties have become increasingly important as commuting destina-

tions.

Figure 3 contains four panels, each representing commuting patterns within a specific group of

commuting zones. The sample is divided into four groups: the top 7 zones, zones ranked 8-30, 31-60,

and the remaining zones, with each group accounting for roughly 25% of the U.S. population. Each

panel shows the share of workers commuting between different origins and destinations within these

zones (e.g., core to suburb).

Suburban counties have grown increasingly important as commuting destinations. Two key pat-

terns stand out. First, commuting from non-core areas to suburban locations has risen significantly,

particularly in mid-sized commuting zones (Top 8–30 and Top 31–60), as shown by the solid red line in

the plots. This increase surpasses the rise in non-core to urban core commuting (black lines). Second,

within suburban locations, the share of individuals living and working within the same county (dashed

red lines) has remained steady or increased, further underscoring their role as central hubs for both

residence and employment.

This paper argues that the growing prominence of suburbs as commuting destinations stems in part

from highway construction, which reduced trade costs and shifted employment away from urban cores.
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While commuting access also plays a role, its effect is distinct: mid-sized suburban zones primarily

draw workers from nearby non-core areas rather than redirecting them toward urban centers. This

dynamic enables suburbs to scale their workforce as demand for locally produced goods rises in response

to reduced trade costs.

Overall these facts serves as a motivation to set up a model with a realistic geography that captures

commute and trade (and migration) linkages.

Figure 3: Share of workers by type of commute out of total number of workers in size bin

Panel A: Commuting in Top 7 Commuting Zones Panel B: Commuting in Top 8-30 Commuting Zones

Panel C: Commuting in Top 31-60 Commuting Zones Panel D: Commuting in remaining Commuting Zones

This figure is divided in four panels or size bins. Each account for about 25% of the population. Panel A depicts the top 7 commuting zones. Panel B, the

top 8-30 commuting zones. Panel C, the top 31-60 commuting zones. Panel D, the remaining commuting zones. The y-axis shows the share of commuters by

’type’ of commute according to origin and destination out of the total number of workers in a given size bin, i.e., Sharek,bin,t =

∑
i∈(k,bin)Workersi,t∑
i∈(bin)Workersi,t

, where

i indexes counties, k types of commute, and bin size bin. The graph depicts these 4 types of commutes: noncore-to-core, noncore-to-suburb, core-to-suburb,

suburb-to-suburb (within the same county). These shares do not sum one because there are omitted categories. Commuting flow data comes from the Journey To

Work Database (1970-2020). To make sure counties definition over time are consistent, I interpolate commuting flows using Eckert et al. (2020) crosswalks.
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3 Reduced form: The Effect of Commuting and Trade Access

In this section, I provide direct evidence of the commuting and trade access effects of highways by

leveraging the fact that highways reduced both commute times and trade costs, but did so in an

heterogeneous way across locations and dates. The impact of a new highway segment depends on the

connections it creates: it can link a county to major employment hubs, increasing commuting access,

or to large consumer markets where firms can ship their goods, enhancing trade access (or both).

3.1 Measurement of commuting and trade access

To understand the impacts of highways through commute and trade, I introduce a measure of com-

muting access and of trade access.

Commuting access. I measure commuting access by weighting changes in commute costs by com-

mute flows, and taking an average:

∆ log ΦW
i,t = −

∑
j π

0
ij|i ·∆τi,j,t (1)

where subscripts are: origin i, destination j, and decade t. πij|i,1970 is the share of workers living in i

that commute to j in 1970. τi,j,t are driving times between counties i and j at decade t. ∆ indicates

a decade-by-decade change. The commuting access measure, ∆ log ΦW
i,t , indicates that a location i’s

commuting accessibility to jobs will increase to the extent that commuting times are reduced along

the pairs (i, j) that are used by a greater share of workers, as measured by the commuting flows,

πij|i,1970. A standard model of commuting as in Ahlfeldt et al. (2015) and Tsivanidis (2023) features

the a relationship between changes in a location’s commuting accessibility, and changes in commute

times as the one I propose in this section.

Trade Access. To compute trade access, I weigh changes in trade costs by trade flows:

∆ log ΨT
d ∝ −

∑
o

λod|o∆ log τo,d,t

where λod|o represents the share of sales from o to county d. Unfortunately, data on trade flows λod|o

for the earliest periods of my sample are unavailable. Therefore, I follow Donaldson and Hornbeck

(2016) and approximate trade shares as λod|o ≈
Ld(ςod)−ε

ΨTo
where market access is approximated as

12



ΨT
o ≈

∑N
d=1 (ςod)

−ε Lo and ςod = τκod denotes the trade costs between o and d. This expression

indicates that the sales share λod|o will be larger when the destination county is large adjusted for

trade costs, relative to the average discounted size of other counties. Consequently, we have:

∆ log ΨT
d ∝ −

∑
o

Lo (ςod)
−ε

ΨT
d︸ ︷︷ ︸

λ̃od

∆ log τo,d,t.

Here, −κε represents the trade elasticity, which can be calibrated to -2 (Boehm et al., 2023),

-1.5 (Monte et al., 2018), or -1.4 (Duranton et al., 2014). For this analysis, I choose -2 and provide

robustness tests. The trade access measure ∆ log ΨT
d indicates that as driving times between counties

decrease, trade access will increase, making larger markets more accessible.

Comparing trade and commuting access. While one might expect a strong correlation between

trade access and commute access, the reality is different. The correlation between these measures

was only 23.3% from 1960 to 1970. The decade-by-decade correlation between these two was 32.8%

from 2000 to 1960. This low correlation arises because trade access assigns positive weights to distant

locations, unlike commute access. For example, while few people commute from Baltimore to New

York, goods produced in Baltimore are still consumed in New York. Figure 4, highlights the distinct

spatial patterns of changes in commuting (Panel A) and trade access (Panel B) from 1960 to 1970.

Commuting access increases are more localized, with many regions showing access growth in at least

one county. In contrast, trade access spans a wider area.

Given the low correlation, we can leverage a variety of comparisons to identify the effects of

commute and trade access on population and employment. For example, counties may experience

increases in commuting access without corresponding increases in trade access, or vice versa. Some

counties may benefit from both, while others see little to no change. Additionally, even if a new

highway segment is built in a different county, it can enhance access from a commuting or trade

perspective as the road network develops.

Figure 5 illustrates two examples. Gray lines show highway segments built by 1960, and blue

lines show those built by 1970. Red counties represent large population centers (top 5% in 1950).

Panel A focuses on the Atlanta metro area, highlighting Coweta County (southwest) and Jackson

County (northeast). Both counties improved their commuting access to central Atlanta, but Jackson

also gained access to a key trade route. As a result, both counties saw commuting access increases

13



(94th percentile), but Jackson’s trade access rose more (83rd percentile vs. 54th for Coweta). Panel B

zooms out to the Greenville-Anderson metro area, where counties saw trade access improvements (80th

percentile or higher) even without new local highway segments. This is thanks to network completion

elsewhere, indicated by the black arrows.

Figure 4: Changes in commute and trade access between 1970 and 1960

Panel A: Commuting Access

Panel B: Trade Access
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Figure 5: Illustrative examples

Panel A: Atlanta, Georgia

Panel B: Atlanta and Greenville-Anderson Metro areas
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3.2 Empirical strategy

Preamble. Consider a naive specification where I run a simple Two Way Fixed Effect (TWFE)

regression relating outcomes such as population and employment to trade and commute access as

defined earlier, conditioning on fixed effects and controls:

yit = %Φit + ϕΨT
it + FEi + FEt + β′Xit + εit (2)

This approach has a few limitations. First, GIS-based driving time measurements might be inac-

curate due to varying traffic speeds, unlike the assumed constant speed of 70 mph. There could also

be measurement error when merging PR-511 data with the HPMS roads shapefile due to the lack of

segment identifiers. If measurement error is classic, OLS would be biased towards zero. Moreover,

highway placement is influenced by political factors, which might lead to biased results if highways are

strategically placed in areas that are growing less (OLS would provide a biased toward zero estimate)

or in areas that are growing more (OLS would over estimate the true impact). Second, the impact of

highways could be persistent over time. As many authors have pointed out, a simple TWFE regres-

sion is prone to bias from heterogeneous impacts over time (Callaway and Sant’Anna, 2021; Sun and

Abraham, 2021; Dube et al., 2023; Callaway et al., 2024). This is because, if a unit was treated in the

past and the effect of the treatment is persistent, then this unit is ‘contaminated’ and should not be

used as a comparison unit for units that are treated later in the sample.

To address the first issue, I use an instrumental variables estimation with four instruments previ-

ously used in the literature: the 1947 Interstate plan, the 1920 Pershing Map, the 1528-1850 historical

routes of exploration, and railroads around 1898 (Baumsnow, 2007; Michaels, 2008; Duranton and

Turner 2012; Frye, 2024; Brinkman and Lin, 2024). I further discuss these instruments later in the

text. To address the second issue, I apply the local projection-based differences-in-differences (LP-

DiD) method from Dube et al. (2023), which uses local projections to estimate dynamic effects and

avoid bias by dropping ‘unclean’ observations. Details are expanded upon next.

Local projection differences in differences (LP-DiD). I apply the LP-DiD approach (Dube et al.,

2023), which combines local projections with a difference-in-differences framework to estimate dynamic

impulse responses from panel data. The key innovation of LP-DiD is the “clean-control” condition,

which ensures unbiased estimates by carefully selecting control groups. Specifically, counties that
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received treatment in earlier periods are excluded from serving as controls in later periods. This

avoids contamination that could arise if previously treated areas were used as comparisons, ensuring

that the control group remains unaffected by earlier shocks and the estimated responses reflect the

true causal effect.

A challenge in this setting is that all locations are affected to some degree due to the continuous

nature of access measures. Each wave of highway construction—occurring in 1970, 1980, 1990, and

2000—alters driving times, influencing every county to some degree. To address this, I define a treated

group for each wave by focusing on locations with access increases above a specific threshold. For each

treatment wave, the threshold is set at the 50th percentile of decade-by-decade changes in access

measures.15 For each highway expansion wave s (e.g., 1970, 1980, 1990, or 2000), counties j that

experience substantial access increases are classified as treated. Control groups consist of counties

that will be treated in future waves or remain untreated throughout the period. This ensures that

units heavily treated in previous periods are not used as controls in later waves.

To estimate the impact of highway construction on population and employment growth, I use a

series of two-period panel regressions centered around the construction event. For each highway wave

s, the baseline period is s − 10, and the post-treatment period is s + h, where h is the horizon of

interest (e.g., h = 40). Let q ∈ {s− 10, s+h} index pre and post periods. The regression specification

is:

ln yj,s,q︸ ︷︷ ︸
population and employment

= ρh log ΦW
j,s,q︸ ︷︷ ︸

commuting

+ϕh log ΨT
j,s,q︸ ︷︷ ︸

trade

+ γs,q,h + γj,s,h︸ ︷︷ ︸
FE

+$′hXj,s,q︸ ︷︷ ︸
controls

+µ̃j,s,h (3)

In the regression model, the terms log ΦW
j,s,q and log ΨT

j,s,q represent the commuting and trade market

access, respectively, for county j during wave s, either before the construction of the highway s− 10,

or just after the construction of the highway s+ 0. Specifically, the access terms are defined as:

log Accessj,s,q =


log Accessj,s−10 if q = s− 10,

log Accessj,s+0 if q = s+ h.

where Access can be either commute, Φ , or trade access ΨT . The key idea is to compute the first

change in access due to highway expansion, s + 0 versus s − 10, and use it to estimate the impulse

15Sensitivity analyses confirm the robustness of results to different threshold choices.
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response for s−20, s+0, s+10, ..., s+40. By using these definitions in the two-period panel regressions,

I measure how the initial change in market access (e.g., log ΦW
j,s+0− log ΦW

j,s−10) affects population and

employment growth. Put differently, this setup captures the cumulative dynamic effects of highways

over time, allowing me to study how improvements in access propagate over multiple decades. I

demean log Φ and log Ψ, and re-scale with standard deviation of their change between 1970 and 1960.

In all regressions, I include the following set of controls interacted with wave s and horizon h fixed

effects: population in 1950, change in log population between 1960 and 1950, income in 1950, share

of the population with college education in 1950, employment in 1950, change in log employment

between 1960 and 1950, ratio of tradable to non-tradable employment, urban dummies in 1950, and

state fixed effects. These controls address potential biases from baseline economic conditions, and

pre-existing trends. State fixed effects capture unobserved policies or shocks at the state level, while

the employment ratio accounts for economic structure. All this, helps ensure that the growth in

unobservables such as TFP or amenities do not confound the relationship between access measures

and economic outcomes.

To estimate the average effect of commute and trade access, it is important to include their inter-

action term. Omitting it would result in omitted variable bias if the interaction term is correlated with

either commute or trade access and the interaction effect is nonzero. The interaction term is likely

to correlate with one or both of the trade access measures. The interaction effect is also expected to

be nonzero. When both trade and commute access improve simultaneously, their interaction can be

negative, meaning the two channels may act as substitutes. For example, better trade access makes

it easier for firms to move goods across regions, but if commute access also improves, workers may

choose to commute to jobs elsewhere rather than work in the same county where trade access has

improved. This reduces the local employment benefits that improved trade access alone would have

generated. To capture such interactions, in some specifications I add the interaction term:

ln yj,s,q = ρh log ΦW,0
j,s,q + ϕh log ΨT,0

j,s,q + ζh

(
log ΦW,0

j,s,q · log ΨT,0
j,s,q

)
︸ ︷︷ ︸

interaction

+γs,q,h + γj,s,h +$′hXj,s,q + µ̃j,s,q (4)

If the interaction coefficient ζh is negative, it suggests that the improvement in commute access reduces

the marginal benefit of trade access. By taking a partial derivative, I predict the average commute

access effect as ρh + ζh
¯

log ΨT,0
j,s,q, and the average trade access effect as ϕh + ζh

¯
log ΦW,0

j,s,q.
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2SLS Local projection differences in differences. Highway placement may not be random,

which requires the use of instruments to address potential endogeneity. To this end, I employ four

well-established instruments from the literature: the 1947 Federal Plan, the 1920 Pershing Plan,

railroads constructed by 1898, and exploration routes from the 16th to 19th centuries. I assume that

highway placement would follow the routes defined by these instruments and calculate driving times

accordingly. To construct these instruments, I determine the time required to traverse the designated

routes between various locations. I then define commuting and trade access measures as follows:

Ψ̃k
d ∝ −

∑
o

λ̃0
odτ

k
od,t and Φ̃k

i,t ∝ −
∑
j

π0
ijτ

k
ij,t (5)

where k indexes each of these four instruments. I interact each of these variables with time trends and

use them as instruments for commuting access, trade access, and their interaction.

To be valid, the instruments must satisfy both exogeneity and relevance conditions. First, I will

discuss the exogeneity condition. The first instrument is the 1947 Plan, developed by the Bureau of

Public Roads to promote intercity trade and national defense (Baum-Snow, 2007, 2019; Duranton and

Turner, 2012). Since the focus was on national defense and intercity trade, the argument is that this

plan may not correlate with fundamentals at the neighborhood level within cities (i.e. counties within

MSAs). However, it could still be related to fundamentals between cities (i.e. MSAs). To further

address this concern, I also use the 1921 Pershing Plan, created under General John J. Pershing to

prioritize military needs over trade (Michaels et al., 2008; Frye, 2024). Additionally, I utilize historical

routes as instruments based on the premise that they are unlikely to correlate with county fundamentals

from 1950 to 2020 while still predicting highway location. Specifically, I follow Duranton and Turner

(2012) by using exploration routes from the 16th to 19th centuries (shapefiles from Brinkman and Lin,

2024) and historical railroads from 1898 (shapefiles from Atack, 2015).

Second, regarding the relevance condition, Appendix A.2 compares each of these instruments with

highway placement by the year 2000. Visual inspection confirms that these instruments effectively

predict the location of highways. While these instruments predict highway placement, they must

also be correlated with the timing of highway construction without being directly related to the

outcome of interest. By interacting these instruments with time trends, the underlying assumption is
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that areas predicted to have lower driving times tended to have highways built first. I do not have

construction dates for these counterfactual roads, but if such data were available, the advantage of

interacting market and commuting access measures with time trends is clear: using actual construction

dates could introduce bias because unobservable factors may be correlated with both population and

employment growth and construction dates. By relying on time trends instead of actual dates, I argue

that it is plausible to claim exogeneity. However, this approach may lead to a weak first stage if the

interacted time trends with market and trade access measures do not effectively predict changes in

market and commute access. Fortunately, this is not the case, as the first stage is usually strong.

3.3 Main results

This section establishes that commute access alone does not drive population and employment growth;

trade access plays an important role. Once trade access is accounted for, the effect of commute access

disappears, highlighting the importance of trade networks in shaping counties’ growth. These effects

are essential inputs for the quantitative analysis conducted in the second step.

OLS results. I first present the results of increasing commuting access without controlling for trade

access. Then, I add the controls for trade. Finally, I add the interaction of trade and commuting. I

repeat this exercise with the variable for trade access. I use log population and log employment as

outcomes.

I begin by looking at the impacts of changes in commuting access on log population and log

employment. Table 1 displays the coefficients for the estimation when h = 40, illustrating the effects

observed after 40 years, specifically for log population. Column (1) shows that a one standard deviation

increase in commute access results in a 5.9% increase in log population. In Column (2), we see that

a one standard deviation increase in trade access leads to a 10.9% increase in population. However,

when both terms are included together in the model, each coefficient decreases in magnitude. Finally,

the interaction term reveals a negative coefficient, suggesting that the simultaneous increases in trade

and commute access may dampen the individual effects of each. We observe similar trends for log

employment in Table 2. Panel A of Figure 6 presents the average effect of commute access after

including the interaction term and computing average effects for the whole time horizon. It also

displays a pre-trend test by estimating effects before highway construction. Controlling for trade

access and its interaction with commute access yields commute effects of 0.03% for population and
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1.5% for employment, both statistically indistinguishable from zero. I find no evidence of differential

pre-trends.

Table 1: Commute and trade access effects on log population after 40 years

(1) (2) (3) (4)

Log Population Log Population Log Population Log Population

Commute Access 0.0588*** 0.0408*** 0.00235

(0.0121) (0.0119) (0.0140)

Trade Access 0.109*** 0.0884*** 0.0958***

(0.0134) (0.0147) (0.0146)

Interaction Term -0.00192***

(0.000330)

Observations 13336 13258 12248 12248

Notes: Standard errors clustered at the county-level in parentheses. * p<0.10, ** p<0.05, *** p<0.01

Table 2: Commute and trade access effects on log employment after 40 years

(1) (2) (3) (4)

Log Employment Log Employment Log Employment Log Employment

Commute Access 0.0882*** 0.0671*** 0.0145

(0.0165) (0.0172) (0.0190)

Trade Access 0.137*** 0.108*** 0.118***

(0.0195) (0.0211) (0.0209)

Interaction Term -0.00263***

(0.000474)

Observations 13336 13258 12248 12248

Notes: Standard errors clustered at the county-level in parentheses. * p<0.10, ** p<0.05, *** p<0.01

In Column (2), trade access has a larger effect than commute access, with a one standard deviation

increase leading to a 10.9% rise in population. When controlling for commute access in Column (3),

the trade access effect decreases slightly to 8.8%, indicating that part of its impact overlaps with

commute access. In Column (4), after accounting for the interaction between trade and commute

access, the trade effect stabilizes at 9.6%. Panel B of Figure 6 traces traces the dynamic impact
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over time, including a pre-trend test before highway construction. Studying the dynamic response of

highway construction is avenue for future research. Figure A.3 shows that the impact is greater for

employment than for population.

Figure 6: OLS estimates of the effect of commuting and trade access

Panel A: Commute Access

Log Population Log Employment

Panel B: Trade Access

Log Population Log Employment

All in all, OLS regressions show that, on average, highways affect population and employment at

the county level primarily through trade access, not commuting access. The effects are greater for
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employment than for population. Since highway placement may not be random, even when pre-trends

are parallel, in the next section, I use a 2SLS estimator to confirm my OLS findings.

2SLS results. Figure 7 summarizes the main findings. Panel A shows the average effect of increasing

commute access (when controlling for trade access and the interaction). Panel B does so for trade

access. In each panel there are two outcomes, population and employment. Each figure depicts in

blue and red the results from using all instruments at the same time. The figure also depicts in the

background the results from excluding a particular instrument (e.g., the 1947 Plan) while keeping

the remaining instruments in the estimation (e.g., “All-1947 Plan”). Kleibergen-Paap F-statistics

are reported below each picture. First stage is strong in most specifications, except when excluding

exploration routes from the 16th-19th centuries.

There are three key takeaways. First, 2SLS regressions confirm that, on average, highways impact

population and employment through trade access, not commuting access. After 40 years, the effect

of commute access is negative and insignificant, while trade access has a positive and significant

impact.16 Second, these results hold across different sets of instruments. Third, the 2SLS results

reveal that OLS underestimates the effect (OLS is lower than 2SLS) of trade access and overestimates

the effect of commute access (OLS is very close to zero, whereas 2SLS is negative but not significant).

3.4 Other results

In Appendix A.4, I present robustness tests and additional results. First, in my baseline estimates,

identification comes from a comparison of access measures between counties, even when they belong to

different commuting zones but within the same state. In this appendix, as a robustness test, I introduce

commuting zones fixed effects interacted with year-by-wave fixed effects. Thus, identification comes

from comparing access measures between two or more counties within the same commuting zone.

Qualitatively, results are similar: the average effect of trade access is positive, while commute access

effects are closer to zero.

16Figure A.4 shows that the impact is greater for employment than for population, albeit sometimes the difference is
not statistically significant.
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Figure 7: 2SLS estimates of the effect of commuting and trade access

Panel A: Commute Access

Log Population Log Employment

Panel B: Trade Access

Log Population Log Employment

Second, this paper examines whether gains in commuting and trade access from highways explain

the suburbanization of population and employment at the county level. To explore suburbanization

within counties, that is, at the census tract level, I construct a panel of census tracts from 1950.

My findings suggest that trade access concentrates population within counties, while commute access

decentralizes it. Although my model does not explicitly account for intra-county geography, these

findings help bridge the gap between existing literature on the effects of highways on neighborhood-
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level population and my analysis.

Third, there may be concerns based on the prior that most commuting occurs within counties and

changes in driving times between counties may have little impact. In this appendix, I exploit changes

in driving times and commute flows to study the relationship directly. I estimate a dynamic gravity

equation for commuting flows using data from 1970 to 2020, leveraging changes in commute times

caused by staggered highway construction. I show that commuting flows between counties do respond

to declines in commute times. However, recall that, on average, commute access is not increasing

total population nor employment. These two outcomes are entirely possible: highways can reorganize

commuting flows without significantly impacting total population and employment. Furthermore,

these findings align with prior research on commuting semi-elasticities but offer a novel contribution

by separately identifying short-and long-run elasticities

3.5 Advantages relative to alternatives empirical strategies.

There is some advantages of my empirical strategy relative to some alternatives. First, to study the

effect of highways one alternative would be to use dummies or perhaps count the number of miles of

highways per county. The problem with this idea is that it would be hard to disentangle the trade

effect from the commute effect. By relying on the commute and trade access measures I can use a

richer variation in the data (i.e. the location of a county within the road network), and even test for

interaction effects. Second, I could use highways dummies and a measure of distance to the closest

central business district to try to pin down the commute access effect. This is because one could

speculate that the commute access effect to be greater on the fringe than on the central business

district. However, the commuting access measure I utilize already handles this idea directly by using

commuting flows as shares. My approach also do not rely on assumptions of what is a central business

district and how far it is from a given county. Third, I could use long differences instead of decade-by-

decade differences, thus avoiding the bias from persistent effects without relying on LP-DiD estimates.

I argue that in the context of highways, by relying on decade by decade, and estimating dynamic

impulse responses, I can leverage finer variation giving me a better chance of differentiating trade

access effects from commute access effects.
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4 Theory

I develop a Quantitative Spatial Model of the U.S., where locations are connected through trade,

commuting, migration. Trade and commute cost reductions trigger migration responses which are

amplified by externalities.

4.1 Environment

The model considers a finite and discrete set of locations, indexed by i, j, o, d, n ∈ S, and an infinite

sequence of discrete periods, t ∈ T . Each location contains three sectors: tradable, non-tradable, and

construction.

4.2 Preferences, commuting and migration

Preferences. There is a continuum of individuals indexed by ω, each living for two periods. In the first

period (“childhood”), they consume what their parents consume. In the second period (“adulthood”),

they choose where to live and work, supply labor inelastically, consume a final good and housing, and

give birth to ζt ∈ (0,∞) children. The utility of an individual ω born in n, living in i, and commuting

to j is:

Un,i,j,t (ω) = νi (ω) · ξn,i,t · ui,t ·
εj (ω)

di,j,t
· Cαi,tH1−α

i,t (6)

where νi (ω) and εj (ω) are idiosyncratic preferences for living in i and commuting to j. di,j,t =

exp(κτi,j,t) is the commute iceberg cost between origin i and destination j, and ξn,i,t is the migration

iceberg cost between origin n and destination i, both of which depend on driving times. ui,t are

amenities, Ci,t is final good consumption, and Hi,t is residential floorspace consumption. Households

maximize this utility subject to the budget:

yn,i,j,t (ω) ≡ wj,t = Pi,tCi,t +Ri,tHi,t (7)

where wj,t is the wage at j, Pi,t is the price of the final good, Ri,t is the rental price of residential

floorspace.

Commuting. Conditional on their place of residence i, individuals draw workplace-specific prefer-
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ences εj (ω) from a Frechet distribution: P (εj ≤ ε) = exp
(
−Kε−θ

)
, where θ is the shape parameter.

They seek the location with the highest utility, which is equivalent to seeking the location with the

highest net income: ỹi,j,t(ω) =
wjεj(ω)
di,j,t

. In other words, they look for the location that provides the

highest income after accounting for commuting costs and commuting preferences. Dispersion in com-

muting preferences affects sensitivity to commute costs. A higher θ (i.e., lower dispersion) implies

greater sensitivity. To understand why, consider the case where preferences over workplace destina-

tions, εj , are homogeneous (i.e., θ → ∞). In this scenario, even a small reduction in commute costs

triggers a large reaction. On average, the probability of choosing location j given residence i is:

πij|i,t =

(
wj,t
di,j,t

)θ
Φi,t

(8)

where commuting access is Φi,t =
∑S

l=1

(
wl,t
di,l,t

)θ
. This is the gravity equation for commuting: it

predicts the share of workers commuting from i to j based on the relative utility derived from working

in j. The numerator reflects the utility associated with working in j, where higher wages wj,t and lower

commuting costs di,j,t increase the likelihood of choosing j. The denominator, Φi,t, is a location-specific

term that captures the total utility across all possible workplace destinations, ensuring the probabilities

across all j sum to one. This equation highlights the trade-off between wages and commuting costs,

with the parameter θ governing how sensitively workers respond to differences in these factors.

The expected income conditional on residence i is:

E[y|i] =
∑
j

πij|i,twj ≡ ȳi,t (9)

The expected utility, conditional on residence i and birthplace n, is:

E [Un,i,j,t(ω) | i, n] ∝ νi(ω) · ξn,i,tui,t
Pαi,tR

1−α
i,t

· Φ1/θ
i,t︸ ︷︷ ︸

Ūn,i,t

≡ UEn,i,t. (10)

While expected income E[y|i] does not directly enter expected utility, the model incorporates the

commuting access term, Φ1/θ, which represents average income net of commuting costs and adjusted

for idiosyncratic commuting preferences. Specifically, E
[
wjεj(ω)
di,j,t

]
∝ Φ

1/θ
i,t .
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Migration. Assuming the idiosyncratic term νi (ω) follows a Frechet distribution with shape param-

eter η, workers’ utility is also distributed Frechet: P (UEn,i,t ≤ x) = exp
[
−
(
UEn,i,t

)η
x−η

]
. Workers

choose the location offering the highest utility in the period they reach adulthood. The probability of

choosing location i is πRi|n,t = P
(
UEn,i,t ≥ maxl 6=i U

E
n,l,t

)
. Thus, the number of individuals moving from

location n to i is:

Ln,i,t = ζt
Ūηn,i,t∑
i∈N Ū

η
n,i,t

Ln,t−1 (11)

where ζt is the number of children per adult. This equation says migration flows increase towards

locations with higher indirect utility Ūn,i,t relative to outside options
∑

i∈N Ū
η
n,i,t, and from origins

with more residents Ln,t−1. From these migration flows I can compute total population per location-

time period. Once I know population per location, I can compute expenditure on final goods (i.e.

tradable and non-tradable goods), and residential floorspace.

This completes the discussion of the household side of the model. Next, we turn to the production

of tradable, non-tradable goods, and final goods, as well as the costs associated with shipping tradable

goods across locations.

4.3 Production of tradable, non-tradable, and final goods

Tradable and non-tradable goods. This model is an application of the Eaton-Kortum frame-

work. Each location has two sectors: sector s can be either tradable (T) or non-tradable (NT),

each producing a continuum of goods indexed by ð. The efficiency of producing good ð in each

sector-location pair {s, o} is a realization of a random variable aso, drawn from a Frechet distribution

F so (a) = exp (−Asoa−ε), where ε is the shape parameter (governing comparative advantage, with lower

ε implying more heterogeneity and stronger comparative advantage), and Aso represents absolute ad-

vantage. The cost of purchasing a good from location o in location d in sector s is given by the random

variable psod = csoς
s
od/ao, where cso is the unit cost in o, and ςsod are the trade costs between o and d. In

the non-tradeable sector we have ςNTod →∞ for all o 6= d. In the tradeable sector we have that ςTod ≥ 1

for all o, d. For both sectors, ςoo is normalized to one.

Firms in the tradable and non-tradable sectors employ structures H̃o and labor L̃o as inputs. For

simplicity, only in the tradable sector, which is the primary focus of this paper, firms additionally

use intermediate inputs. Structures, labor and intermediate inputs are aggregated with an elasticity
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of substitution σ. In principle, σ can be below one, which would imply that labor, floorspace, and

intermediate inputs are gross complements. The cost bundle in sector s ∈ {T,NT} is:

cso,t =
(
%sLw

1−σ
o,t + %sHR̃

1−σ
o,t + (1− %sL − %sH)P To,t

1−σ
) 1

1−σ
(12)

where P To is the CES price index intermediate goods, which is the same price index of tradable goods,

and %NTL + %NTH = 1.

Final goods. The final good is a CES aggregate of the tradable and non-tradable goods with elasticity

σD. The corresponding price indexes are:

PNTi,t =

[∫ 1

0

(
pNTi,t (ð)

)1−σD
dð
] 1

1−σD
and P Ti,t =

[∫ 1

0

(
pTi,t(ð)

)1−σD
dð
] 1

1−σD
(13)

Pi,t =
[
b
(
P Ti,t
)1−σD

+ (1− b)
(
PNTi,t

)1−σD] 1
1−σD (14)

From quantitative point of view, including the non-tradable sector in the model is important be-

cause it grew considerably between 1950-2020 as a result of structural change. From a qualitative point

of view, it is important because the non-tradable sector interacts closely with trade and commuting.

If tradable and non-tradable goods are complements, a decrease in trade costs may shift the house-

hold expenditure share from tradable to non-tradable goods, causing a reallocation of employment

between sectors. Moreover, a reduction in commuting costs (i.e. a labor supply shock to a first order

approximation) primarily affect prices in the labor-intensive sector, decreasing household expenditure

share in that sector and increasing it elsewhere.

4.4 Trade

The likelihood that county o supplies a particular good to county d is the probability λod that o’s price

turns out to be the lowest. Recall that due perfect competition, psod =
csoς

s
od

aso
for both sectors. Thus,

the lowest price realization in county d is pd = min{pod : o = 1, . . . , N}. Given ao follows a Frechet

distribution P (ao ≤ a) = exp(−Aoa−ε), we have that the probability that county o provides a good
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at the lowest price to county d is:

λod|d =
Ao (coςod)

−ε

Ψd

where Ψd =
∑N

o=1Ao (coςod)
−ε summarizes states of technology, input costs, and geographic barriers,

and their influence on prices in each county d. Notice that for the non-tradable sector ΨNT
d =

ANTd cNTd
−ε.

Due to the Frechet assumption, goods purchased by destination counties have a price distribution

that does not depend on the source. A source county with better technology, lower input costs, or fewer

barriers will sell a wider variety of goods, until the price distribution of the goods sold by the source

county matches the overall price distribution in the destination. Since county’s d average expenditure

per good does not vary by source, the fraction of goods that county d buys from county o is also the

fraction of its expenditure on goods from county o:

Xs
od

Xs
d

= λsod =
Aso (csoς

s
od)
−ε

Ψs
d

(15)

Finally, to derive the price indexes, we plug the distribution of realized prices into the price indexes

of equations 13.17 Assuming σD < 1 + ε, the price indexes become:

PNTd = cons ·
(
ΨNT
d

)−1/ε
and P Td = cons ·

(
ΨT
d

)−1/ε
(16)

with const =
[
Γ
(
ε+1−σD

ε

)]
.

4.5 Floorspace and land

Each location is endowed with Ko units of land, which, combined with labor under an elasticity of

substitution ν, produces floorspace Ho.
18

Solving the problem of the firm yields the following cost bundle for floorspace:

cCons
o =

(
βw1−ν

o + (1− β)Q1−ν
o

) 1
1−ν , (17)

17Gd (p) = 1 − exp (−Ψdp
ε).

18If labor and land are substitutes, differences in land prices can affect the production mix. For instance, in suburban
areas where land prices are typically lower due to its abundance, firms tend to use more land than other inputs. This
explains why factories, warehouses, and homes are generally larger in suburban and rural areas compared to central
locations.
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where wo are wages, Qo is the price of land, and β represents labor-specific productivity and 1 − β

represents land-specific productivity, normalized to sum to 1. Due perfect competition, the rental

price of floorspace Ro is:

Ro =

(
βw1−ν

o + (1− β)Q1−ν
o

) 1
1−ν

Zo
, (18)

where Zo denotes the total factor productivity of the construction sector.

Total floorspace H is allocated between residential and commercial uses. This allocation is deter-

mined by the total demand from residential uses (from households) and commercial uses (the sum of

demand from the tradable and non-tradable sectors).

Finally, revenue from floorspace production, HoRo, is distributed between labor and land payments.

Specifically, the share of revenue allocated to labor payments is βw
1−ν
o

c1−νo
, and the share allocated to land

payments is (1− β)Q
1−ν
o

c1−νo
. Developers, who are responsible for producing floorspace, own the land and

use their land payments to consume the final good.

4.6 Scale externalities

The model incorporates externalities in two ways: through total factor productivity (TFP) and ameni-

ties. For TFP, I use a constant scale elasticity formulation (Allen and Donaldson, 2023), while for

amenities, I adopt a heterogeneous scale elasticity (Bartelme, Li and Velasquez, 2024). The respective

specifications are:

ATj,t = ĀTj,t ·
(
L̃Tj,t−1

)δ
, (19)

ui,t = ūi,t ·


γφ0 if Li,t−1 < γ0

(Li,t−1)φ if γ0 ≤ Li,t−1 ≤ γ1

γφ1 if Li,t−1 > γ1

The key difference between these formulations lies in how externalities respond to changes in scale.

The constant scale elasticity used for TFP assumes proportional productivity gains with increases in

the labor force L̃j,t−1. In contrast, the heterogeneous scale elasticity for amenities allows the strength of

externalities to vary across regions according to population size  Lj,t−1. This specification captures the

following logic in a reduced-form way: large locations face congestion effects that diminish the benefits

of additional people, while small locations lack the critical mass required to generate endogenous
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amenities. Mid-sized regions—such as suburbs—strike a balance, avoiding excessive congestion while

benefiting from a sufficiently large population.

I use heterogeneous externalities instead of a constant scale elasticity for these reasons. First, this

approach provides the model with a better chance of matching the reduced-form evidence. Increases

in trade access and commute access on population (and employment) constitute at least two key

moments (four if employment is also considered). Thus, incorporating more parameters, rather than

just one, offers greater flexibility. Second, in practice, I find that amenity externalities play a larger

role in explaining the observed effects than TFP externalities, making it more practical to allow for

heterogeneity where it matters most. Third, while it is theoretically possible to use heterogeneous scale

elasticities for both TFP and amenities, doing so would substantially expand the parameter space. In

practice, I employ an indirect inference approach to align the effects of commuting and trade access

in the data with those in the model. Expanding the model to estimate six parameters would make

this process computationally intractable.

The relationship between trade and commute access effects and amenity externalities is as fol-

lows. Both lower trade costs and lower commute costs trigger migration responses that are amplified

by amenity externalities. Trade-induced migration occurs as households seek greater market access,

while commute-induced migration results from households seeking better access to jobs. According

to the data, the reduction in commuting costs was particularly significant in dense suburban areas,

while reductions in trade costs were more pronounced in less dense areas. To reconcile the empirical

observation that improvements in commute access generate minimal population responses on aver-

age, amenity externalities must be inactive in the denser areas where commute cost reductions were

substantial. Conversely, to explain the large population responses to improvements in trade access,

amenity externalities need to be active in the less dense areas where trade cost reductions were signif-

icant.

Finally, I assume dynamic rather than static externalities in the model. While both static and

dynamic externality models can exhibit multiplicity when the slope of the externality function is large

enough, this particular dynamic formulation ensures a unique equilibrium path, conditional on initial

conditions, even when multiplicity may arise in the steady state. Thus, it provides a natural mechanism

for equilibrium selection within the model, even when the estimated slope is large, allowing for the

possibility of multiplicity.
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4.7 Market clearing and equilibrium

Market clearing. The model reduces to market clearing conditions for employment and floorspace,

where I have omitted the t subscript:

L̃dwd︸ ︷︷ ︸
Commuting

= %TL

(
wd
cTd

)1−σ
XT
d︸ ︷︷ ︸

Tradable Sector

+ %NTL

(
wd
cNTd

)1−σ
XNT
d︸ ︷︷ ︸

Non-Tradable Sector

+β

(
wo
cConso

)1−ν
XCons
d︸ ︷︷ ︸

Construction Sector

(20)

QdTd

(1− β)
(

Qd
cConsd

)1−ν

︸ ︷︷ ︸
=HdRd

= %TH

(
R̃d
cTd

)1−σ

XT
d︸ ︷︷ ︸

Tradable Sector

+ %NTH

(
R̃d
cNTd

)1−σ

XNT
d︸ ︷︷ ︸

Non-Tradable Sector

+ (1− α)ȳdLd︸ ︷︷ ︸
By Workers

(21)

where note that L̃d is employment and Ld is population.

The left-hand side of the employment equation represents labor supply, which depend on com-

muting costs. The right hand side is total labor demand which depends on trade linkages. Moreover,

the left-hand side of the floorspace equation, which is the supply of floorspace, already imposes land

market clearing.

To close the model, I use the fact that exports from county i are equal to total income of the

tradable sector XT
i =

∑
dX

T
id =

∑
d λid|dX

T
d , with balanced trade ensuring exports equal imports:

XT
i = P Ti C

W,T
i + P Ti C

H,T
i + (1− %TL − %TH)

(
PTi
cTi

)1−σ
XT
i , with wiL̃

T
i = %TL

(
wTi
cTi

)1−σ
XT
i . From these,

I obtain an expression for XT
d which I plug into the employment and floorspace market clearing

conditions:

XT
d =

∑
o

ATd
(
cTd ς

T
do

)−ε
ΨT
o

P To C
W,T
o︸ ︷︷ ︸

By Workers

+ P To C
H,T
o︸ ︷︷ ︸

By Landlords

+
(1− %TL − %TH)

%TL

(
P To
wTo

)1−σ

woL̃
T
o︸ ︷︷ ︸

By Tradable Firms

 (22)

where P Td C
W,T
d = b

(
PTd
Pd

)1−σ
αȳdLd is the consumption by workers, and P Td C

H,T
d = b

(
PTd
Pd

)1−σ
QdTd

is the consumption by landowners. The system of equations for employment and floorspace solves for

wages (wd) and land prices (Qd).
19

Equilibrium. We are ready to define the equilibrium of the model.

19We can substitute Rd =
(βw1−ν

d
+(1−β)Q1−ν

d )
1

1−ν

Zd
into the system to express Rd in terms of Qd.
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Definition 1. Given geography of bilateral costs
{
ςNTod,t , ς

T
od,t, dod,t, ξn,i,t

}
o,d,t

, set of characteristics and

initial conditions
{
ATd,t, A

NT
d,t , ud,t, Td, Zd,t, L̄0

}
d,t

, and parameters
{
%TL, %

T
H , %

NT
L , b, β, α, θ, η, ε, σ, σD, ν, γ, φ, ζt

}
,

the equilibrium is a path of prices, {wd,t, Qd,t}, and allocations,
{
Hd,t, L̃d,t

}
d,t

, such that there is

floorspace market clearing, labor market clearing, total population adds up,
∑

i Lit = ζt
∑

i Lit−1.

4.8 Comparative statics in a simplified environment

To build intuition about how changes in commuting and trade access affect outcomes, I simplify the

framework and perform comparative statics. My focus is on understanding the impact of reduced

driving times on suburbs and urban cores.

First, I streamline the production and consumption structure. Each location contains a single

tradable sector that relies exclusively on labor. While migration decisions remain, I assume no migra-

tion frictions. I also disregard externalities, reducing the model to a framework with one sector, one

input, and explicit commuting and trade interactions across locations. With these assumptions, the

labor market clearing condition simplifies to:

wd
∑
i

πij|iLi︸ ︷︷ ︸
Labor Supply

=
∑
o

λdo|o (ȳoLo)︸ ︷︷ ︸
Labor Demand

(23)

where:

λdo|o =
Ad (cdςdo)

−ε

Ψo
Li =

Ūηi L̄∑
i∈N Ūηi

Ūni =
ui
Pi
· Φ1/θ

i

ȳi =
∑
j

πij|iwj πij|i =

(
wj
dij

)θ
Φi

Φi =

S∑
l=1

(
wj
dij

)θ
Ψi =

∑
j

Aj (wjςji)
−ε Pi = (Ψi)

−1/ε

Second, I streamline the geography to focus on three linearly arranged locations: a core city A, its

suburb a, and another core city B. The initial travel time between A and B is τ minutes, with the

suburb a positioned βτ minutes from A and (1 − β)τ minutes from B. I analyze how constructing a

highway between A and B, which reduces travel time (τ), affects the spatial distribution of economic

activity. Figure 8 illustrates the geography before and after the highway construction, emphasizing

the compression of driving times.
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Figure 8: Simplified geography before and after a highway construction

A a B
βτ (1− β)τ

A a B
βτ ′ (1− β)τ ′

τ → τ ′

Without Interstate Highways, τ With Interstate Highway, τ ′

In response to the construction of the highway, the population in suburb a increases according to

the following expression:

− 1

La

dLa
dτ

= −
(
ΩLa/wA ·

dwA/dτ

wA

)
−
(
ΩLa/wB ·

dwB/dτ

wB

)
−
(
ΩLa/ς · κτ

−1
)
−
(
ΩLa/d · κ

)
(24)

Here, the first term, −
(
ΩLa/wA ·

dwA/dτ
wA

)
, represents migration to a driven by changes in the equi-

librium wage in A. The second term, −
(
ΩLa/wB ·

dwB/dτ
wB

)
, captures migration to a resulting from

changes in the equilibrium wage in B. The third term, −
(
ΩLa/ς · κT τ−1

)
, reflects migration to a due

to reductions in trade costs enabled by the highway. Finally, the fourth term, −
(
ΩLa/d · κ

)
, accounts

for migration to a prompted by reductions in commute costs generated by the highway. For simplicity,

I assume wages in a serve as the numeraire, implying dwa/dτ
wa

= 0.

First-order approximations. I start by studying the first-order effects of highway construction

which are given by the last two terms of equation 24. The response of the population to commute

cost reductions is governed by the elasticity −ΩLa/d:

−ΩLa/d = η {−$A (βπAa + πAB) + (1−$a) (βπaA + (1− β)πaB)−$B (πBA + (1− β)πBa)}

where $i is the share of households residing in i.

Reducing commuting costs affects location choices, as individuals consider commuting access when

deciding where to live. Ceteris paribus, on average, more people will choose the location offering better

commuting access. Consequently, when commuting times change across all locations, it is essential to

identify where commuting access increases the most. For example, commuting access in A increases

by βπAa + πAB, while commuting access in B rises by πBA + (1− β)πBa. Similarly, commuting access

in a increases by βπaA + (1− β)πaB.

To a first-order approximation, the greater the commuting flows from a location to other regions,

the larger the impact of reducing commute costs on that location’s commuting access. How these
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changes in commuting access influence the decision to live in a depends on their effect on the utility

of living in a (which receives a weight of 1) relative to their effect on the average utility, where each

of these changes is weighted by $i.

Now, let us assume that no one commutes to or from B, effectively treating B as being ‘too far

away’. In this scenario, commuting flows exist only between A and a. Furthermore, suppose the

share of people commuting to A from a is initially higher than the share commuting in the opposite

direction. In other words, I assume that πAB = πBA = πBa = πaB = 0 and πaA > πAa. Under these

assumptions, the following relationship holds:

−ΩLa/d = −β$A {πAa − πaA} − β$B {−πaA} > 0 (25)

To a first-order approximation, if workers in suburb a commute to other locations more intensively

than workers in A or B, then suburb a will expand in response to reductions in commuting costs (note

the double negative).

Now, let’s turn to trade cost effects. The response of population in a given trade cost reductions

is:

−ΩLa/ς = η
{
−$A

(
λaA|A + λBA|A

)
+ (1−$a)

(
λAa|a + λBa|a

)
−$B

(
λAB|B + λaB|B

)}
where $i is the share of the population living in i.

Trade cost reductions, to a first order, affects location choices because households aim to minimize

the price of tradable goods. Since trade costs are decreasing everywhere, it is important to identify

where the reductions are the most pronounced. This depends on which locations, ex-ante, are more

dependent on trade to supply the goods that households consume.

We assume that suburb a relies more on core city A than A relies on suburb a, and that suburb

a also relies more on A than core B relies on A. Specifically, λaA|A < λAB|B < λAa|a. Moreover,

suburb a relies more on core B than A relies on B, and more than core B relies on suburb a, i.e.,
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λaB|B < λBA|A < λBa|a. Under these assumptions, we can show that:

−ΩLa/ς = −

λaA|A − λAa|a︸ ︷︷ ︸
<0

+λBA|A − λBa|a︸ ︷︷ ︸
<0

−$B

λAB|B − λAa|a︸ ︷︷ ︸
<0

+λaB|B − λBa|a︸ ︷︷ ︸
<0

 > 0. (26)

By imposing λaA|A < λAB|B < λAa|a and λaB|B < λBA|A < λBa|a, we assume that suburb a is

highly dependent on both A and B. Thus, constructing a highway connecting A and B particularly

benefits suburb a, since it lies between the two cores.

If we had instead imposed λaA|A < λAa|a < λAB|B and λaB|B < λBa|a < λBA|A, the effect could

reverse, leading to a decrease in population in suburb a despite its reliance on both A and B (more

than what each core relies on the suburb). This is because, under this alternative assumption, the

cores are highly interdependent, and constructing highways connecting them would cause them to

amplify their growth, and expand at the expense of the suburb.

Accounting for general equilibrium responses in wages. While I do not fully characterize the

derivatives dwA/dτ
wA

and dwB/dτ
wB

in the main text, I do explain how changes in wages affect suburban

growth. The impact of wages on suburban population is given by:

ΩLa/wB = η
{
−$A

(
πAB − λBA|A

)
+ (1−$a)

(
πaB − λBa|a

)
−$B

(
πBB − λBB|B

)}
ΩLa/wA = η

{
−$A

(
πAA − λAA|A

)
+ (1−$a)

(
πaA − λAa|a

)
−$B

(
πBA − λAB|B

)}
The difference πij −λji|i indicates that when wages in location j increase, commute access to location

i improves because more people commute to j, but market access to i decreases as goods from j

become more expensive. If πij > λji|i, commute access increases more than market access decreases,

prompting migration to location i; otherwise, market access dominates, leading to outmigration. This

demonstrates how trade and commuting interact in shaping population responses to wage changes.20

For example, if a location i primarily sends workers to producing locations without sourcing goods

from them, wage increases in the producing locations will raise commute access more than what market

access will decrease, leading to migration to the location i. Conversely, if a location i relies on goods

from the producing location more than it sends workers, wage increases will reduce market access

20Trade and commuting also interact in shaping the wage responses to highway construction, dwA/dτ
wA

and dwB/dτ
wB

.
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more than they improve commute access, resulting in outmigration from location i.

By applying the restrictions λaA|A < λAB|B < λAa|a and λaB|B < λBA|A < λBa|a, we can show

that:

ΩLa/wB = $A

λBA|A − λBa|a︸ ︷︷ ︸
<0

 η −$B

(
1− λBB|B + λBa|a

)︸ ︷︷ ︸
>0

η < 0 (27)

ΩLa/wA =

$A

((
πaA − λAa|a

)
−
(
πAA − λAA|A

))︸ ︷︷ ︸
?

η +$B

(
πaA + λAB|B − λAa|a

)︸ ︷︷ ︸
?

η


The first equation indicates that if wages in B increase, migration to suburb a will decrease. This is

because the loss of competitiveness in location B causes workers to move from B to A rather than to a,

as suburb a depends heavily on B, and the reduction in market access is significant. In the alternative

scenario where the cores were highly interdependent, particularly where core A relies on B for goods,

then a rise in wages in core B could potentially increase the population in suburb a. The second

equation shows that, under the current assumptions, the effect of a wage increase in A on suburb a

is ambiguous. It depends on whether the suburb relies on A for goods more than as a commuting

destination. If the net reliance of the suburb on A (reliance on goods relative to employment) exceeds

the net reliance of core B, then the effect could favor migration to a.

Ultimately, whether suburbs expand in response to highways affecting wages depends on several

factors discussed here. These include the elasticity of migration with respect to wage changes, as well

as the effects of highways on wages, dwA
dτ /wA and dwB

dτ /wB, which I discuss in Appendix A.5.

5 Bridging Theory and Data

In this section, I describe the process of matching the model to real data, estimating key parameters,

and calibrating the remaining ones.

5.1 Model inversion

Based on the knowledge on some parameters, and availability of some data, I can invert the model

and recover all the model’s unobservables, which are required to simulate counterfactual scenarios.

A key feature of the model is that we can invert for unobservables, and then decompose them into
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endogenous (i.e. due externalities) and exogenous unobservables. The following theorems formalize

these ideas.

Theorem 5.1: Bilateral commuting flows. Given parameter {θ}, data {wd}, and bilateral com-

mute costs {dod}, there exists a unique set of commuting preferences {Dod} that rationalize bilateral

commute flows {πod|o}.

Proof. See Appendix A.1

Theorem 5.1 uses data on wages and commute costs to predict commuting flows. The theo-

rem’s logic relies on identifying commuting preferences Dod such that Dod(wd/dod)θ

Φo
= πod|o, where

Φo =
∑

dDod(wd/dod)
θ.

Theorem 5.2: Construction labor market clearing. Given parameters {ν, β} and data {L̃d, wd, Hd, Rd},

there is a unique set of construction TFP, {Zd}d, and land supply, {Kd}d, that rationalize the data as

an equilibrium of the model.

Proof. See Appendix A.2

Theorem 5.2 uses labor and labor market clearing in the construction sector plus perfect com-

petition, along with data on floorspace, wages, and sectoral employment, to infer land supply and

construction productivity.

Theorem 5.3: Non-tradable and tradable labor market clearing. If αȳ|dLd+(1− β)
(

Qd
cConsd

)1−ν
RdHd ≥

L̃NTd wd, ∀d, given parameters

{σ, σD, ε, θ, ν, %T , %NTL , b, α, β}, data {Ld, L̃sd, wd, Hd, Rd, }, and bilateral costs {ςNTod , ςTod, dod}, there is

a unique set of TFP in the tradable and non-tradable sectors {ATd , ANTd }d that rationalize the data as

an equilibrium of the model.21

Proof. See Appendix A.3

Theorem 5.3 leverages labor market clearing in both the tradable and non-tradable sectors, along-

side perfect competition, to recover unobserved sectoral productivity using data on floorspace units

21Ld,−1 indicates population in the previous period.
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and prices, wages, and sectoral employment. A sufficient condition is that the maximum income avail-

able for spending within a location is at least as large as the wage bill in the non-tradable sector, which

we observe from the data. In models without commuting, this condition is trivially satisfied.22 Once

this condition holds, we can recover the total factor productivity (TFP) in the non-tradable sector by

ensuring the income spent on workers in the non-tradable sector matches the wage bill implied by the

data.

Theorem 5.4: Migration. If αȳ|dLd + (1− β)
(

Qd
cConsd

)1−ν
RdHd ≥ L̃NTd wd, ∀d, given parameters

{σ, σD, ε, θ, ν, %T , %NTL , b, α, β, η}, data {Ld, Ld,−1L̃
s
d, wd, Hd, Rd, }, and bilateral costs {ςNTod,t , ς

T
od, dod, ξod},

there is a unique set of amenities {ud} that rationalize the data as an equilibrium of the model.

Proof. See Appendix A.4

Finally, Theorem 5.4 uses all previous theorems, and hence requires the same data and parameters,

plus migration elasticities η and bilateral migration frictions ξni,t. It relies on the migration equations

derived from the model to rationalize the time series of population across counties, Li,t.

5.2 Calibration

This section clarifies which parameter values I estimate from the data, and which I calibrate from

existing literature.

Externalities. Scale externalities for TFP, δ, are calibrated following updated estimates in the

literature (Bartelme et al., 2024). I choose a value of δ = 0.1, which is close to the median across

sectors. I estimate amenity externalities following an indirect inference approach, which is explained

in detail in the following section.

Commuting parameters. I assume an exponential representation of commute costs following papers

in the literature: dij = exp(κτij). Appendix A.7 estimates the relationship between commute times

and commute flows in the short- and long-run. For the model, I assume an average semi-elasticity of

κθ=0.0375 which is the average of all the coefficients shown in Appendix A.7.23 Then, I use estimates

22For instance, in a model without commuting or a floorspace market, the condition simplifies to ȳdLd ≥ L̃NTd wd,
where income and population equal wages and total employment (L̃NTd + L̃Td ).

23This paper presents a static model of commuting, despite the dynamic gravity equation indicating differences between
short- and long-run elasticities. I am currently developing a paper that explores the implications of dynamic commuting.
Since commuting is static in this paper, I simply assume an average elasticity across time. If I instead a calibrate
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of θ from the literature to calibrate θ and κ. In particular, Monte et al. (2018) estimates suggest a

value of θ = 3.3. From, there I get a value of κ = 0.0375/3.3 = 0.0114.

Migration parameters. I calibrate migration costs as done typically in the literature and assume:

ξij = τ−κmij . For the sake of computing migration costs, I fix 1960 driving times to represent county

distances. This assumes highways influence migration only indirectly through prices, commuting

access, and amenities, but not directly through reductions in driving times. From 2000–2010 migration

data, I estimate a gravity equation and find κmη = 1.25 (see Appendix A.8 for details). Following the

literature, I set η = 4. Population growth ζt is calibrated directly from the data.

Trade parameters. I calibrate trade costs as ςji = Bs(i),s(j)τ
κT
ji . Using Monte et al. (2018), I set

the elasticity of driving times to trade flows as κT ε = 1.5, with ε = 4 from Broda and Weinstein

(2006). The term Bs(i),s(j) representing home bias equals one for intra-state trade and exceeds one for

inter-state trade. I calibrate Bs(i),s(j) to match 1992 data on average intra-state expenditure from the

Freight Analysis Framework.

Floorspace production parameters. Based on Albouy et al., (2018), the share of land in floorspace

production, 1 − β, is about 0.4. The elasticity of substitution between land and labor, drawn from

Epple et al., (2010), Ahlfeldt and McMillen (2018, 2020), and Combes et al., (2021), ranges from 0.75

to 1.4. I select the value of ν = 1.20 to reflect increased substitution toward land as its price falls.24

Tradable and non-tradable production parameters. For the production of tradables, intensities

for labor, floorspace, and intermediate sum to one (
∑

k %
T
k = 1). For non-tradables, the only factors

are floorspace and labor, and their intensities sum to one (
∑

k %
NT
k = 1). I assume labor and land

intensities of %TL = %TH = 0.25 for tradables, with intermediates at 1 − %TL − %TH = 0.50, aligning with

input-output data and Valentinyi and Herrendorf (2008).25 For non-tradables, I assume labor and

land intensities of %NTL = 2/3 and %TL = 1/3, following Valentinyi and Herrendorf.26 Regarding, the

the elasticity in this paper using the value after 40 years (θκ = 0.060), every decade’s commuting will be excessively
responsive to commuting times.

241.20 is the middle value that allows for substitution (i.e. above one) and that is within the range of estimates (below
1.4). Note that estimates in the literature concern land and capital, not labor as in this paper. Future versions may
include intermediate inputs as a proxy of capital.

25See Table 7, Valentinyi and Herrendorf (2008), with re-normalized values excluding non-tradable intermediates, and
capital relabeled as floorspace.

26See Table 7, Valentinyi and Herrendorf (2008), with re-normalized values excluding intermediates, and capital rela-
beled as floorspace.
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elasticity of substitution between floorspace and labor, I assume a value of σ = 0.3, the midpoint value

in Behrens, et al., (2022) range of 0.2-0.4.

Household consumption parameters. From the Bureau of Labor Statistics Expenditure Surveys,

the share of household consumption allocated to land is approximately 1− α = 1/3. The intensity of

tradables in the final goods bundle, denoted by b, is directly derived from the data and calibrated to

ensure that the sum of exports is equal to the sum of imports:

∑
i

XT
i =

∑
i

(
P Ti C

W,T
i + P Ti C

H,T
i + (1− %TL − %TH)

(
P Ti
cTi

)1−σ

XT
i

)

where P Td C
W,T
d = b

(
PTd
Pd

)1−σ
αȳdLd is the consumption by workers, and P Td C

H,T
d = b

(
PTd
Pd

)1−σ
QdTd

is the consumption by landowners. I assume an elasticity of substitution between tradables and non-

tradables of σD = 0.5, roughly consistent with findings in the literature (e.g. 0.44 in Stockmand and

Tesar, 1995; 0.74 in Mendoza, 1991).

Theorems and unobservables. With these parameters (except for externalities), I apply Theorems

5.1-5.4 to back out unobservables for each county-by-decade. This allows me to match county-level data

by decade on population, employment, bilateral commuting, wages, floorspace prices, and floorspace

supply. I then use the recovered amenities to perform the indirect inference approach outlined in the

next section.

5.3 Indirect inference

The goal of this section is to estimate the amenity externality function, which includes three param-

eters: the slope of the externality, φ, and two location thresholds, γ0 and γ1.27 I utilize an indirect

inference approach and map the externality parameters to the reduced-form evidence I reported in

Section 3.3. The primary advantage of employing an indirect inference approach is that it allows

us to leverage the general equilibrium responses generated by the model and compare them to those

observed in the data.

I estimate the effects of trade and commute access on population and employment using model-

generated data. Using Theorems 5.1-5.4, I recover unobservable factors for each decade, hold them

27To avoid estimating three parameters, I calibrate γ0 using the average rural population of 3,000, meaning externalities
are inactive below this threshold.
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fixed at their 1960 levels, and solve the model under two scenarios: one without highways and one in-

corporating highways from the Pershing Plan. This approach assumes that the assignment of highways

under the Pershing Plan is effectively random. By comparing population and employment growth in

the scenario with highways to the counterfactual scenario without highways, and relating those changes

to the shifts in commute and trade access induced by the highways, I estimate the effects of trade and

commute access on population and employment after 40 years.

By comparing the model’s moments to the data, I search for the amenity elasticity φ and the upper

threshold γ1 that minimizes the difference between the model’s reduced-form regressions and the data’s

reduced-form evidence. I use the IV estimates as target moments. That is, I target four moments:

the trade and commute access effect on population and employment. I minimize the quadratic loss

function:

Loss = [βdata − βmodel]I[βdata − βmodel]′ (28)

where βdata and βmodel are row vectors, and I is the identity matrix.

Panel A of Figure 9 presents the resulting loss function. As the location parameter approaches

infinity, the loss function increases, indicating a poorer fit between the model and the data. This serves

as evidence against the constant scale formulation. Similarly, as the slope parameter approaches zero,

the loss function increases for every location parameter, providing evidence against the no externality

formulation.

I estimate a slope parameter of φ = 1.15 and a location threshold of γ1 = 198, 790. Panel B

of Figure 9 shows sharp identification, especially for the location parameter. The estimated effects

are: trade access increases population by 0.21 (data = 0.20) and employment by 0.17 (data = 0.24),

while commute access decreases population by -0.10 (data = -0.08) and employment by -0.10 (data

= -0.08). The model closely matches population changes but underestimates trade access effects on

employment.

43



Figure 9: Loss Function

Panel A: Log Loss vs Slope and Log Location

Panel B: Fixing one parameter to its estimated value while varying the remaining one

Regarding the magnitude of these parameter estimates, some comments are in order. While the

slope is larger than typical values in the literature, it remains reasonable for two reasons. First, in

contrast to constant scale elasticities—where large locations experience unbounded improvements as

externalities never diminish—heterogeneous scale elasticities limit the amplification of externalities to

the range between γ0 and γ1. This ensures that beyond γ1, population growth stabilizes, yielding a

unique steady state in partial equilibrium for large locations even for large slopes. Second, some studies

assume negative amenity externalities to capture congestion effects associated with fixed land. While

my model includes variable floorspace, land remains fixed, which introduces an endogenous congestion

force. My calibration already accounts for these features, allowing the estimated amenity externalities

to be higher, and even positive, as seen here. Moreover, my calibration also considers imperfect

migration given the Frechet assumption for migration preferences, where the shape parameter acts as
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another dispersion force.

With regards the location parameters, their value highlights how congestion offsets amenity ex-

ternalities in the largest counties, and the lack of critical mass in the smallest counties. By 1960,

approximately 1,800 out of 3,092 counties lie within the interval γ0 = 3, 000 to γ1 = 198, 790, with

the 35 largest counties falling outside the upper threshold. By 2020, approximately 2400 counties

lie in this interval, with 120 counties above the upper threshold. This suggests that in these large

counties, congestion forces are strong enough to offset any positive amenity externalities, which is a

plausible finding. Importantly, this does not imply that living in large cities offers no advantages. My

calibration assumes TFP externalities follow a constant scale formulation, meaning productivity gains

from agglomeration in large cities remain intact.

6 Counterfactuals: Unpacking Suburban Growth

In this section, I use a model calibrated to the U.S. economy. To calibrate the model, I match county-

level data on population, employment, commuting flows, wages, floorspace prices, and floorspace

supply from 1950 to 2020. This allows me to back out unobservable shocks. I then simulate a

counterfactual scenario without the Interstate Highway System, holding all other shocks between 1960

and 2020 constant. I evaluate three cases: highways reduce only commute costs, only trade costs, and

both simultaneously.

First, I discuss the aggregate effects of constructing highways, decomposing the overall impact

into three components: the trade effect, the commute effect, and the interaction between trade and

commute. Second, to better understand the aggregate results on suburbanization and urban core

decline, I examine which components of the utility function were most affected by trade and commute

cost reductions. Finally, I explore the heterogeneity across suburbs and urban cores. I identify which

suburban characteristics predict suburban growth and urban core decline.

6.1 Aggregate effects: results

Table 3 shows my main findings. Panel A reports changes in population share by NCHS classification,

while Panel B shows changes in employment share. Each row presents changes in percentage points.

The first row in each panel shows the observed change in shares between 1960 and 2020 (Data ∆).
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The second row displays the total effect of highways by comparing the simulated economy with and

without highways. The next two rows decompose this total effect into the commute effect (only

reduced commuting costs) and the trade effect (only reduced trade costs). Finally, the last row shows

the interaction effect, which captures the additional impact when both commuting and trade cost

reductions are introduced simultaneously. The interaction is computed as the difference between the

total effect and the sum of the commute and trade effect. Each column represents a category in the

NCHS classification of counties (Core, Suburbs, Medium, and Small/Rural areas).

Highways account for 0.94 percentage points of the 6.14 percentage point increase in population

share attributed to suburbs (15.3%), while they explain -0.88 percentage points of the -3.33 percentage

point decline in core areas (26.6%). In the data, medium cities grew by 3.27 percentage points, while

small and rural areas shrank by 6.10 percentage points. In contrast, the model predicts medium cities

shrinking by 0.60 percentage points and small and rural places growing by 0.53 percentage points.

Table 3: The effect of Interstate Highways on population across county aggregates

Panel A: Population share by NCHS classification

Core Suburbs Medium Small/Rural

Data ∆ (2020-1960) -0.0333 0.0614 0.0327 -0.0610

Total Effect (hwy - no hwy) -0.0088 0.0094 -0.0060 0.0053

Commute Effect 0.0013 0.0083 0.0036 -0.0131

Trade Effect -0.0100 -0.0035 -0.0125 0.0260

Interaction Effect -0.0001 0.0047 0.0030 -0.0075

Panel B: Employment share by NCHS classification

Core Suburbs Medium Small/Rural

Data ∆ (2020-1960) -0.0157 0.0504 0.0319 -0.0669

Total Effect (hwy - no hwy) -0.0027 0.0030 -0.0041 0.0040

Commute Effect 0.0033 0.0054 0.0019 -0.0103

Trade Effect -0.0074 -0.0047 -0.0086 0.0206

Interaction Effect 0.0015 0.0022 0.0026 -0.0063

I unpack the growth driven by highways across three terms: commute-only, trade-only, and inter-

action effects. The reduction in commute costs contributed to the relative decline of small and rural

areas compared to medium cities, suburbs, and core counties, with suburbs experiencing the most

growth. Regarding trade access, the reduction in trade costs shifted populations away from core and
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medium cities toward small and rural areas. While suburbs also contracted, they did so to a lesser

extent than cores, so suburbs grew relative to cores, even when both shrunk in absolute terms.

The interaction effect shows that simultaneous reductions in trade and commute costs further

enhanced suburban growth, particularly at the expense of rural areas. Notably, the interaction effect

accounts for 50% (0.0047/0.0094) of the total increase in suburbs, underscoring the significance of

trade in the suburbanization process, which is characterized by the decline of cores and the rise of

suburbs.

For employment, as shown in Panel B, highways similarly explain about 17.2% of the decline in

core areas and 6% of the rise in suburbs. Qualitatively the commute, trade and interaction effects

show similar patterns.

6.2 Aggregate effects: discussion

I now explore the factors driving the observed patterns of suburban growth and urban decline. First, I

examine why reductions in commute costs alone promote suburban growth, while reductions in trade

costs alone support growth in rural areas. Then, I analyze the interaction between trade and commute

cost reductions.

Starting from equation 6, locations with larger increases in job access (i.e., commute access) and

consumer access to goods (i.e., trade access) become more desirable places to live. Other factors

that influence location choice include access to non-tradable goods, rental prices of floorspace, and

amenities, though I focus here on commute and trade access.

(i) First-order changes in commute and trade access. I calculate the average change in commute

access due to changes in driving times,

∆ log Φi =
∑
j

πij,2020,no hwy × (log dij,hwy − log dij,no hwy) ,

and the average change in trade access due to changes in driving times,

∆ log Ψi =
∑
j

λji,2020,no hwy × (log ςji,hwy − log ςji,no hwy) ,

across cores, suburbs, medium metros, and rural areas. I use 2020 commute and trade shares from
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the counterfactual scenario without highways as weights. Growth in commute and trade access is

normalized relative to cores, for example, ∆ log Φsuburb −∆ log Φcore. Panel A of Table 4 presents the

average values of commute and trade access changes across counties, aggregated into cores, suburbs,

medium metros, and rural areas. The results indicate that, to a first order, commute access increased

most in suburban locations, while trade access rose most in rural areas. This aligns with findings

from the previous section: reductions in commute costs alone favor suburban growth (see “Commute

Effect” in Table 3.), while reductions in trade costs encourage rural growth at the expense of cores

(see “Trade Effect” in Table 3.).

However, some questions still remain. If commute cost reductions increased commute access in all

locations more than in core areas, why do rural areas shrink when commute costs are reduced? (See

“Commute Effect” in Table 3.) Similarly, if trade access rises in suburban areas relative to core when

trade costs are lowered, why do these areas not grow accordingly? (see “Trade Effect” in Table 3.)

To address these questions, next I explore how the general equilibrium effects on prices might explain

these patterns.

(ii) Interaction effects between reductions in trade and commute costs. As per Table 3,

the interaction between trade cost and commute cost reductions led to further growth in suburbs and

medium cities, at the expense primarily of rural areas. Why is that? In Panel B, I calculate changes

in commute access based on shifts in wages,

∆ log Φi =
∑
j

πij,2020,no hwy × (logwj,hwy − logwj,no hwy) ,

and changes in trade access based on shifts in unit costs,

∆ log ΨT
i = −

∑
j

λji,2020,no hwy ×
(
log ucTji,hwy − log ucTji,no hwy

)
,

This time shifts are computed by comparing the observed data where highways reduce both trade

and commute costs against a counterfactual scenario where highway were never built. I also compute

shifts in other components of the utility function such as access to non-tradable goods (i.e. inverse of

non-tradable prices), floorspace rental prices, and amenities.

The results show that equilibrium price responses increased suburban population through commute
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access, trade access, access to non-tradable goods, and lower floorspace prices. Meanwhile, amenities

primarily grew in medium cities and suburbs. In other words, endogenous amenities play a key role in

shaping the interaction between commute and trade cost reductions. Commute cost reductions spurred

suburban population growth. Once suburbs reached a critical mass, trade cost reductions—though to

a first order favoring rural areas more than suburban areas—further boosted suburban growth, since

it triggered a higher accumulation of endogenous amenities than in rural areas.

To sum up, reductions in commute costs primarily benefited suburban areas, where increased job

access spurred migration and amplified endogenous amenities, creating a reinforcing growth loop.

Trade cost reductions, however, favored rural growth by improving access to consumer goods, drawing

residents outward. When both costs declined simultaneously, these forces interacted: suburban areas

became focal points for growth as they absorbed both commuter-driven and trade-driven migration.

Table 4: The effect of Interstate Highways on determinants of workers’ utility

Panel A: First-order changes in commute and trade access

Core Suburbs Medium Small/Rural

Commute access (∆ log Φ) 0 0.593 0.340 0.355

Trade access (∆ log ΨT ) 0 0.045 0.051 0.075

Panel B: Simultaneous commute and trade cost reductions and their effect on components of workers’ utility

Core Suburbs Medium Small/Rural

Commute access (∆ log Φ) 0 -0.003 0.023 0.060

Trade access (∆ log ΨT ) 0 -0.006 -0.007 -0.006

Access to non-tradable goods (∆ log ΨNT ) 0 -0.084 -0.164 -0.323

Floorspace prices (∆ logR) 0 0.402 0.454 0.435

Endogenous amenities (∆ log u) 0 0.213 0.213 0.143

6.3 Heterogeneous effects

So far, I have focused on the aggregate impacts of highways. However, there is significant heterogeneity

across suburbs. In this section, I identify which suburbs expanded due to highways, particularly as a

result of trade cost reductions.

Figure 10 highlights the heterogeneity in population and employment growth across U.S. counties.

First, the maps reveal that growth disproportionately occurred inland, away from the coasts. Since

many of the largest counties are located along the coasts, this suggests a trend toward decentralization.
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Second, while population and employment growth are correlated, they do not align perfectly. For

example, the employment decline was more pronounced in coastal areas, particularly in the southwest

(e.g., Los Angeles), than population decline. Conversely, the central west region experienced stronger

employment growth relative to population growth.

Figure 10: Population and employment growth across counties

Panel A: Population growth (highways - no highways)

Panel B: Employment growth (highways - no highways)
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Figure 11: County growth across suburbs and urban cores

Figure 11 plots the log change in 2020 population between the world with highways and without

highways against the 2020 population in the counterfactual world without highways, focusing on

suburbs and cores. The results show that population growth in suburbs was concentrated in smaller

suburbs, while larger suburbs and most core areas experienced population decline.

I then use regression analysis to characterize population growth in suburbs and cores based on

their trade and commute linkages. In Tables 5 and 6 I relate population growth to several factors for

cores and suburbs separately. Column 1 includes population in the counterfactual scenario without

highways and its square. Column 2 adds the share of commuters and the share of expenditures within

the same county (base category is commuters and expenditures elsewhere). Column 3 includes the

share of commuters to core and suburban areas, while Column 4 adds the share of expenditures in

core and suburban areas (base category is commuters and expenditures in medium cities pooled with

rural areas).

Table 5 shows that smaller cores experience the most growth or the least decline. Cores are more

likely to grow when residents spend a larger share of their expenditures on goods produced in other

cores, rather than locally or in suburbs and rural areas (Column 4). This pattern suggests that

stronger trade links between core areas support core growth. For suburbs, Table 6 shows that smaller

suburbs grow faster in response to highway construction. Suburban growth is also influenced by a
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higher share of local workers, as well as workers commuting to other suburbs and cores. Moreover,

spending within the suburb itself is an important driver of growth. Together, these results indicate

that highways foster suburban growth when suburbs also function as employment hubs, not just as

residential locations for core commuters.

Table 5: Determinants of population growth in urban cores

Variable Population growth

(1) (2) (3) (4)

Log Initial Population -1.7426*** -1.7170*** -1.5911*** -2.1576***

(0.5142) (0.5124) (0.5267) (0.5154)

Log Initial Population Squared 0.0681*** 0.0656*** 0.0598*** 0.0777***

(0.0203) (0.0202) (0.0210) (0.0200)

Share Working Locally -0.1446 -0.4221 0.0083

(0.3660) (0.3956) (0.3783)

Share Spent Locally 0.2620 0.3537* 0.0548

(0.1931) (0.1984) (0.2014)

Share Working in Core -1.3961 -0.6863

(2.1317) (1.9727)

Share Working in Suburb -1.9858 -0.7371

(2.1683) (2.0716)

Share Spent in Core 2.5160***

(0.8969)

Share Spent in Suburb 1.6563

(1.0751)
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Table 6: Determinants of population growth in suburbs

Variable Population growth

(1) (2) (3) (4)

Log Initial Population -1.9216*** -1.4113*** -1.3716*** -1.4383***

(0.2783) (0.2917) (0.2770) (0.2869)

Log Initial Population Squared 0.0766*** 0.0470*** 0.0440*** 0.0480***

(0.0134) (0.0144) (0.0137) (0.0145)

Share Working Locally 0.5004 0.9637*** 0.7788**

(0.3206) (0.3219) (0.3506)

Share Spent Locally 1.3863*** 1.2194*** 1.6723***

(0.3425) (0.3265) (0.4791)

Share Working in Core 2.1007*** 2.1980***

(0.6409) (0.6760)

Share Working in Suburb 1.0649 1.3788*

(0.6705) (0.7216)

Share Spent in Core -0.2700

(0.5860)

Share Spent in Suburb -0.8159

(0.7320)

7 Conclusions

In this paper, I examine the U.S. Interstate Highway System’s role in reshaping population and em-

ployment patterns, showing that highways significantly reduced trade costs as well as commuting costs.

This reduction in trade costs, alongside commuting improvements, was crucial in driving suburban

growth and urban core decline.

First, using variation in highway construction dates and driving time reductions from 1950 to 2020,

I estimate the impacts of commuting and trade access on county-level population and employment.

I find that a one standard deviation increase in trade access raises population and employment by

9.6% and 11.8%, respectively, while a similar increase in commuting access results in only a 0.03% and

1.5% rise. This suggests that trade cost reductions have a more substantial impact on growth than

commuting cost reductions.

Second, I develop a quantitative spatial model incorporating trade, commuting, migration, produc-
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tion, and amenity externalities. Using indirect inference, I calibrate this model to the U.S. economy

and simulate a counterfactual without the Interstate Highway System. When highways reduce both

trade and commute costs, they account for 15% of suburban growth and 33% of urban core decline.

Commute cost reductions alone explain 88% of suburban growth, primarily at the expense of rural

areas, while trade cost reductions account for the remaining suburban growth and all of the decline in

urban cores.

My analysis highlights that commute cost reductions largely benefit suburban areas by improving

job access and boosting local amenities, while trade cost reductions encourage rural growth by improv-

ing access to goods. When both costs decrease, suburban areas absorb growth from both commuters

and trade-related migration, reinforcing their role as residential and commercial hubs.
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A Appendix

A.1 Figures and Tables

Figure A.1: Distribution across counties of the share of people working on the same county
they live

To make sure counties definition over time are consistent, I interpolate commuting flows using Eckert et al.

(2020) crosswalks. Commuting flow data comes from the Journey To Work Database (1970-2020).
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Figure A.2: Highway plans, historical routes, and actual highways

1947 plan Pershing plan

16th-19th centuries explorations Railroads by 1898

Shapefile sources: 1947 Plan (Baum-Snow, 2019); Pershing Plan (Frye, 2023); Exploration Routes (Brinkman and Lin, 2024); Railrods (Atack,

2015), Interstate Highways (Highway Performance Monitoring System, 2005)
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Figure A.3: OLS estimates of the effect of commuting and trade access

Panel A: Commute Access

Log Employment - Log Population

Panel B: Trade Access

Log Employment - Log Population

60



Figure A.4: 2SLS estimates of the effect of commuting and trade access

Panel A: Commute Access

Log Employment - Log Population

Panel B: Trade Access

Log Employment - Log Population
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Figure A.5: OLS estimates of the effect of commute and trade access on log population by
commuting zone and county NCHS classification

Panel A: Top 7 commuting zones

Commute Trade

Panel B: Top 8-60 commuting zones

Commute Trade

Panel C: Remaining commuting zones

Commute Trade
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Figure A.6: OLS estimates of the effect of commute and trade access on log employment
by commuting zone and county NCHS classification

Panel A: Top 7 commuting zones

Commute Trade

Panel B: Top 8-60 commuting zones

Commute Trade

Panel C: Remaining commuting zones

Commute Trade
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Figure A.7: OLS estimates of the effect of commuting and trade access and their
interaction

Panel A: Commute Access

Log Population Log Employment

Panel B: Trade Access

Log Population Log Employment
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Figure A.8: OLS estimates of the effect of commuting and trade access conditioning on CZ
times year-by-wave FE

Panel A: Commute Access

Log Population Log Employment

Panel B: Trade Access

Log Population Log Employment
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Figure A.9: 2SLS estimates of the effect of commuting and trade access conditioning on
CZ times year-by-wave FE

Panel A: Commute Access

Log Population Log Employment

Panel B: Trade Access

Log Population Log Employment
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Figure A.10: OLS estimates of the effect of commuting and trade access on census-tracts’
population

Panel A: Commute Access

Log Population (unweighted) Log Population (weighted)

Panel A: Trade Access

Log Population (unweighted) Log Population (weighted)

A.2 Solution algorithm

TBD.
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A.3 Data Appendix

TBD.

A.4 Other results

Heterogeneity across commuting zones

Facts 1 and 2 in Section 2.2 established that suburbs, especially in mid-sized commuting zones,

emerged as key employment hubs. Section 3.3 established that the average effect of trade access is

positive, whereas the average effect of commute access is statistically not distinguishable from zero.

This section explores the intersection of these two ideas. That is, it analyzes how commuting and

trade access affect peripheral counties compared to central ones, across commuting zones of different

sizes.

How? I restrict the sample by commuting zone size. Then, I re-run regressions, interacting

commute and trade access with indicators for large central areas (i.e. core areas), suburbs, medium

metros, and small metros pooled with rural areas (following the NCHS classification). In most cases,

I choose large central counties as base category. Thus, coefficients are interpreted in relative terms.

Figure A.5 presents population results. Panel A focuses on the top 7 commuting zones (LA,

NY, Chicago, Houston, SF, NJ, Boston).28 The findings reveal that, after 40 years, commuting and

trade access effects on smaller areas, relative to large central counties, are statistically insignificant.

Employment results, shown in Figure A.6, follow a similar pattern.29

Panel B examines the top 8-60 commuting zones. The key finding is that trade access drives popu-

lation and employment decentralization, while commuting access plays a smaller role. First, regarding

trade access, Figure A.5 shows that it significantly affects population in fringe counties compared to

large central counties. The same is true for medium metros relative to large central counties, though to

a lesser extent. Figure A.6 show similar patterns for employment. Second, regarding commute access,

it also has positive relative impacts but these are statistically insignificant30. Overall, these findings

support Facts 1 and 2: increased trade access has made suburbs and intermediate cities important

employment hubs.

28I group medium, small, and rural counties to ensure a larger sample. Within the biggest commuting zones there are
just a few counties classified as either medium, small or rural.

29However, in the short-run (0-10 years), only commute access has relative impacts for population, while only trade
access has relative impacts for employment.

30Although they are statistically significant for employment as per Figure A.6.
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Panel C focuses on the remaining commuting zones. For this panel, I group counties classified

as large central and fringe into a single category, again because of small sample considerations. I

use this category as base category.31 For population, both commute and trade access show negative

coefficients across all areas, meaning that rises in commute and trade access have larger impacts on

fringe counties relative to medium metros (and fringe counties relative to smaller metros and rural

areas). For employment, only trade effects are statistically significant. In other words, both commute

and trade access increase population density in the smallest commuting zones, though trade access

only does so for employment.

In summary, suburbs have become major employment hubs due to trade access. In large commuting

zones, decentralization produced by commute and trade effects is not persistent. However in mid-sized

commuting zones decentralization is persistent. In the smallest commuting zones, commute access

concentrates population and employment towards higher-density areas, while trade access only does

so for employment.32

Interaction. In previous sections, I introduced the interaction between commute and trade access

and treated it like a control, while also computing the average effect of either commute or trade access.

In this section, I explore the sign and magnitude of this interaction term with greater detail.

Theoretically, when trade and commute access both improve simultaneously, the interaction effect

can be negative, meaning the two channels substitute for each other. For instance, if trade access

improves, making it easier for firms to move goods across regions, but commute access also increases,

workers may prefer to commute to jobs in other regions instead of working locally. This weakens the

local employment benefits that improved trade access would otherwise provide.

Figure A.7 shows the commute and trade effect for population and employment. I compute the

effect of increasing commute access assuming that trade access increases at the 5th percentile and

95th percentile to illustrate the interaction’s magnitude. The reverse is done for trade access. Since

commute access effects decrease with trade access, there is a negative interaction. When trade access

is low enough, commute access becomes positive and statistically significant, even when the average

impact of commute access is zero in Figure 6. In contrast, the impact of trade access remains positive,

even with high commute access changes.

31This is because within the smallest commuting zones there are just a few counties classified as either large central
or fringe.

322SLS results are available in Appendix, but conclusions are similar despite weak first-stage results in some subsamples.
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Controlling for commuting zones fixed effects interacted with year-by-wave fixed effects.

In the baseline, I control for state fixed effects interacted with year-by-wave fixed effects. Identification

comes from a comparison of access measures between counties, even when they belong to different

commuting zones but within the same state.

An interesting comparison would be between counties with highways leading to different connec-

tions, but within the same commuting zone. For example, from the point of view of a city like Baltimore

or Washington DC, finding more economic activity around a highway leading to Manhattan, NY, ver-

sus one leading to Charlottesville, VA would highlight the trade access effects of highways. To do a

comparison similar to this example, I introduce commuting zones fixed effects interacted with year-

by-wave fixed effects (and lose the state fixed effects). The commuting zone fixed effects interacted

with year-by-wave fixed effects will be perfectly colinear with the access measures of commuting zones

comprised by a single county. Thus, identification comes from comparing access measures between

two or more counties within the same commuting zone.

OLS results are available in Appendix A.8. Overall results are similar to the baseline, but with a

few nuances. First, commuting effects are positive and statistically significant for employment: a one

standard deviation increase in commuting access rises employment by 3.7% (in Figure 6 the effect was

of 1.5% but statistically, zero). For population, the effect is still indistinguishable from zero. Second,

trade effects are almost halved: increasing trade access rises population by 5.5% (instead of 9.6%) and

employment by 7.7% (instead of 11.8%).

While OLS estimates give commuting access a bigger role than in the baseline, the opposite is true

for 2SLS estimates. Estimating the effect of trade and commute access by 2SLS, while also controlling

for commuting zone times year-by-wave fixed effects strengthens the impact of trade (see Appendix

A.9). Trade effects nearly double, with 40-year coefficients for population and employment increasing

to 0.36 and 0.46, respectively (rather than 0.20 and 0.24). Commuting effects remain negative but

they are now statistically significant.

Census tracts. This paper examines whether gains in commuting and trade access from highways

explain the suburbanization of population and employment at the county level. To explore suburban-

ization within counties, that is, at the census tract level, I construct a panel of census tracts from 1950

to 2020. Only population data is available and not employment.33 I rerun the regression using census-

33To ensure consistent census tract definitions, I use crosswalks from Lee and Lin (2018) and the Longitudinal Tract
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tract population as the outcome and introduce census tract fixed effects to trace out how population

changes in response to a county-wide increase in trade and commute access.34 The analysis is done

both with and without weighting by tract population in 1950. If trade access only affects population

when weighted, it suggests that trade access increases population in the most populous tracts.

OLS results (Appendix A.10) show that without weights, commute access increases population,

while trade access has no effect after 40 years. However, when population weights are applied, commute

access has a smaller impact than without weights. In turn, trade access shows a statistically significant

positive effect. This suggest that trade access effects are concentrated on the most populous tracts,35

whereas commute access effects are so in the least populous tracts.36

In summary, trade access decentralizes population between counties but concentrates it within

counties. Moreover, commuting access has no effect on suburbanization between counties but decen-

tralizes population within counties.

Does commuting between counties respond to changes in commute times? There may be

concerns that studying changes in commute access at the county level is unfructuous, under the prior

that most commuting occurs within counties and changes in driving times between counties have little

impact. First, Figure A.1 already suggests otherwise. It shows that many residents work outside their

home county, and that this number has been increasing over time. Second, I exploit changes in driving

times and commute flows to study the relationship directly.

In this section, I estimate a dynamic gravity equation for commuting flows using data from 1970

to 2020, leveraging changes in commute times caused by staggered highway construction. Results in

Appendix A.7 show that a one-minute increase in commute time reduces the probability of commuting

by 1.8% in the short run, but this effect grows to 6.0% after 40 years. These findings align with prior

research on commuting semi-elasticities but offer a novel contribution by separately identifying short-

and long-run elasticities.

Data Base. The sample includes only census tracts in MSAs with a positive population in 1950. If a tract was not part
of an MSA in 1950 but appears later, its 1950 data is recorded as missing.

34I also lose the state-by-year-by-wave fixed effects to avoid over saturation of the regression with fixed effects.
35Or, at the very least, trade effects are somewhat constant across tracts of different sizes since coefficients are similar

when the regression is weighted or unweighted.
36I do not report 2SLS estimates because instruments in this subsample are weak: the Kleibergen-Paap F-statistics

are around 2.
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A.5 Wage responses to highway construction in an environment with a simplified

geography

Recall that in the simplified environment discussed in the main text, the market clearing conditions

are given by:

wd
∑
i

πij|iLi︸ ︷︷ ︸
Labor Supply

=
∑
o

λdo|o (ȳoLo)︸ ︷︷ ︸
Labor Demand
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By totally differentiating this system with respect to driving times τ , we can use the implicit function

theorem to compute the wages response to highway construction.

In particular, and imposing wages in a as the numeraire, wage responses to highway construction

are given by the solution of the following system of equations

 (ΨRHSA/A − ΣLHSA/A

) (
ΨRHSA/B − ΣLHSA/B

)
(
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) (
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(
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}


where ΣLHSi/j terms are labor supply responses in location i to changes in wages in location j (or to

changes in commute costs and trade costs). ΨRHSi/j terms are labor demand responses in location i

to changes in wages in location j (or to changes in commute costs and trade costs).

The vector to the right group the first order effects of changing trade and commute costs on labor

supply and labor demand. Whether highways increase labor supply more than labor demand depends

whether Σ terms are higher than the Ψ terms.
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As it can be inferred from equation 29, labor supply responses to highway construction and to

equilibrium changes in wages depend on three factors: on direct wage responses, responses in com-

muting flows, and responses in location choices. Labor demand responses, in turn, depend on how

trade flows respond to highway construction, and in the response in total income by location.

Thus, labor supply and demand responses Σ and Ψ depend on commute and trade linkages. Below,

I characterize each:
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(
ΩLA/wa
LA

+
πAawa
ȳA
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)
+ λAB|BLB ȳB ·

(
ΩLB/d

LB

)
(48)

ΨRHSA/ς = λAA|ALAȳA

(
ΩLA/ς

LA
+
(
λaA|A + λBA|A

)
ε

)
+ λAa|aLaȳa

(
ΩLa/ς

La
+
(
λAa|a + λBa|a − 1

)
ε

)
+ λAB|BLB ȳB

(
ΩLB/ς

LB
+
(
λAB|B + λaB|B − 1

)
ε

)
(49)

ΨRHSa/A = λaA|ALAȳA

(
ΩLA/wA
LA

+
πAAwA
ȳA

−
(
1− λAA|A

)
ε

)
+ λaa|aLaȳa

(
ΩLa/wA
La

+
πaAwA
ȳa

−
(
1− λAa|a

)
ε

)
+ λaB|BLB ȳB

(
ΩLB/wA
LB

+
πBAwA
ȳB

−
(
1− λAB|B

)
ε

)
(50)

ΨRHSa/a = λaA|ALAȳA

(
ΩLA/wa
LA

+
πAawa
ȳA

+ λaA|Aε

)
+ λaa|aLaȳa

(
ΩLa/wa
La

+
πaawa
ȳa

+ λaa|aε

)
+ λaB|BLB ȳB

(
ΩLB/wa
LB

+
πBawa
ȳB

+ λaB|Bε

)
(51)

ΨRHSa/B = λaA|ALAȳA

(
ΩLA/wB
LA

+
πABwB
ȳA

+ λBA|Aε

)
+ λaa|aLaȳa

(
ΩLa/wB
La

+
πaBwB
ȳa

+ λBa|aε

)
+ λaB|BLB ȳB

(
ΩLB/wB
LB

+
πBBwB
ȳB

+ λBB|Bε

)
(52)

ΨRHSA/d = λaA|ALAȳA ·
(
ΩLA/d

LA

)
+ λaa|aLaȳa ·

(
ΩLa/d

La

)
+ λaB|BLB ȳB ·

(
ΩLB/d

LB

)
(53)

ΨRHSa/ς = λaA|ALAȳA

(
ΩLA/ς

LA
+
(
λaA|A + λBA|A − 1

)
ε

)
+ λaa|aLaȳa

(
ΩLa/ς

La
+
(
λAa|a + λBa|a

)
ε

)
+ λaB|BLB ȳB

(
ΩLB/ς

LB
+
(
λAB|B + λaB|B − 1

)
ε

)
(54)

ΨRHSB/A = λBA|ALAȳA

(
ΩLA/wA
LA

+
πAAwA
ȳA

−
(
1− λAA|A

)
ε

)
+ λBa|aLaȳa

(
ΩLa/wA
La

+
πaAwA
ȳa

−
(
1− λAa|a

)
ε

)
+ λBB|BLB ȳB

(
ΩLB/wA
LB

+
πBAwA
ȳB

−
(
1− λAB|B

)
ε

)
(55)

ΨRHSB/a = λBA|ALAȳA

(
ΩLA/wa
LA

+
πAawa
ȳA

+ λaA|Aε

)
+ λBa|aLaȳa

(
ΩLa/wa
La

+
πaawa
ȳa

+ λaa|aε

)
+ λBB|BLB ȳB

(
ΩLB/wa
LB

+
πBawa
ȳB

+ λaB|Bε

)
(56)

ΨRHSB/B = λBA|ALAȳA

(
ΩLA/wB
LA

+
πABwB
ȳA

+ λBA|Aε

)
+ λBa|aLaȳa

(
ΩLa/wB
La

+
πaBwB
ȳa

+ λBa|aε

)
+ λBB|BLB ȳB

(
ΩLB/wB
LB

+
πBBwB
ȳB

+ λBB|Bε

)
(57)

ΨRHSB/d = λBA|ALAȳA ·
(
ΩLA/d

LA

)
+ λBa|aLaȳa ·

(
ΩLa/d

La

)
+ λBB|BLB ȳB ·

(
ΩLB/d

LB

)
(58)

ΨRHSB/ς = λBA|ALAȳA

(
ΩLA/ς

LA
+
(
λaA|A + λBA|A − 1

)
ε

)
+ λBa|aLaȳa

(
ΩLa/ς

La
+
(
λAa|a + λBa|a − 1

)
ε

)
+ λBB|BLB ȳB

(
ΩLB/ς

LB
+
(
λAB|B + λaB|B

)
ε

)
(59)

A.6 Theorems and propositions

Theorem A.1: Given parameter {θ}, data {πod, wd}, and bilateral commute costs {dod}, there

exists a unique set of commuting preferences {Kod} that rationalize bilateral commute flows.

Proof. From the formula for commute flows:

πij|i =

(
Kj

wj
di,j

)θ
∑

l

(
Kl

wl
di,l

)θ (60)
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Since we observe πij|i, dij , and wj , we solve for Kj for all j, given that the system of equations is

homogeneous of degree one in Kj .

Theorem A.2: Given parameters {ν, β} and data {L̃d, wd, Hd, Rd}, there is a unique set of

construction TFP {Zd} and land supply {Td} that rationalize the data as an equilibrium of the model.

Proof. From labor market clearing in the construction sector, we infer unit costs as:

L̃Cd wd = β

(
wd
cConsd

)1−ν
RdHd︸ ︷︷ ︸

by construction

⇒ cConsd = β
1

1−ν

(
L̃Cd w

ν
d

RdHd

)− 1
1−ν

We then recover productivities in the construction sector:

Rd =
cConsd

Zd

Using the cost function definition cConso =
(
βw1−ν

o + (1− β)Q1−ν
o

)1/(1−ν)
, we can infer land prices Qo:

(1− β)Q1−ν
d =

(
RdHd

L̃Cd
− wd

)
βw−νd

Finally, from land market clearing:

(1− β)

(
Qo
cConso

)1−ν
RoHo = QoTo

we can recover land supply To.

Theorem A.3: If αȳ|d,tLd,t + (1− β)
(

Qd
cConsd

)1−ν
Rd,tHd,t ≥ L̃NTd,t wd,t, ∀d, given parameters

{σ, σD, ε, θ, ν, %T , %NTL , b, α, β}, data {Ld,t, L̃sd,t, wd,t, Hd,t, Rd,t, }, and bilateral costs {ςNTod,t , ς
T
od,t, dod,t},

there is a unique set of TFP in the tradable and non-tradable sectors {ATdt, ANTdt } that rationalize the

data as an equilibrium of the model.

Proof. From previous theorems we have inferred prices and supply in the land market, plus commute

flows and therefore average income. These will be inputs later in the proof.
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We start by computing compute unit costs and the price index in the non-tradable sector:

cNTo =
(
%NTw1−σ

o +
(
1− %NT

)
R̃1−σ
o

)1/(1−σ)
and PNTo = cons ·

(
ANTd cNTo

−ε)−1/ε
(61)

with const =
[
Γ
(
ε+1−σD

ε

)]
.

We use labor market clearing the in the non-tradable and tradable sectors to search for the set of

TFPs that solves the following system of equations

L̃Tdwd︸ ︷︷ ︸
Data

= %TL

(
wd
cTd

)1−σ
XT
d︸ ︷︷ ︸

Tradable Sector

(62)

L̃NTd wd︸ ︷︷ ︸
Data

= %NTL

(
wd
cNTd

)1−σ
XNT
d︸ ︷︷ ︸

Non-Tradable Sector

(63)

where:

XT
d =

∑
o

ATd
(
cTd ς

T
do

)−ε
ΨT
o

P To C
W,T
o︸ ︷︷ ︸

By Workers

+ P To C
H,T
o︸ ︷︷ ︸

By Landlords

+
(1− %TL − %TH)

%TL

(
P To
wTo

)1−σ

woL̃
T
o︸ ︷︷ ︸

By Tradable Firms

 (64)

XNT
d = (1− b)

(
PNTd

Pd

)1−σ

αȳdLd︸ ︷︷ ︸
By Workers

+ (1− b)
(
PNTd

Pd

)1−σ

QdTd︸ ︷︷ ︸
By Landlords

(65)

P Td = cons ·

(
N∑
o=1

ATo
(
cTo ς

T
od

)−ε)−1/ε

(66)

and P Td C
W,T
d = b

(
PTd
Pd

)1−σ
αȳdLd is the consumption by workers, and P Td C

H,T
d = b

(
PTd
Pd

)1−σ
QdTd is

the consumption by landowners. Every element in these equations, except for ANT and AT is either

known directly from the data (e.g. Lsdwd ), inferred from a previous theorem (e.g. QdTd), or inferred

in this theorem (e.g. P Td ).

In fact, one can prove that the system is homogenous of degree 0, provided that parameters %Tx

scale appropriately to a given normalization. Multiply TFP in the non-tradable and tradable sectors

by a constant c. Notice that this term cancels out everywhere except in the demand of intermediate
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inputs by tradable firms, where we are left with:

c−(1−σ)/ε (1− %TL − %TH)

%TL

(
P To
wTo

)1−σ

woL̃
T
o (67)

Hence, we need to set the new
(1−%̃TL−%̃

T
H)

%̃TL
to equal to (1/c−(1−σ)/ε)

(1−%TL−%
T
H)

%TL
, so that the c term cancels

out here as well.

Finally, notice that total income (by workers and landlords) in the right hand side of the non-

tradables’ labor market clearing equation is either observed directly in the data, or inferred from the

data in a previous step. Then, the model can only match the wage bill in the non-tradable sector if the

share of income spent on the non-tradable sector is large enough. This condition is trivially satisfied

in a model without commuting but with a non-tradable sector.

Theorem A.4: If αȳ|d,tLd,t + (1− β)
(

Qd
cConsd

)1−ν
Rd,tHd,t ≥ L̃NTd,t wd,t, ∀d, given parameters

{σ, σD, ε, θ, ν, %T , %NTL , b, α, β, ζt}, data {Ld,t, L̃sd,t, wd,t, Hd,t, Rd,t, }, and bilateral costs {ςNTod,t , ς
T
od,t, dod,t, ξod,t},

there is a unique set of amenities {ud} that rationalize the data as an equilibrium of the model.

Proof. From previous theorems we recover Pi,t, and ȳi,t. From migration equations we have the

following system of equations which, in every period, is homogeneous of degree one in amenities ui,t:

Li,t =
∑
n

ζt
Ūηn,i,t∑
i∈N Ū

η
n,i,t

Ln,t−1 (68)

Ūn,i,t =
ξn,i,tui,t

Pαi,tR
1−α
i,t

· ȳt,|i (69)

A.7 Dynamic Commuting Gravity Equation

In this section, I estimate a dynamic gravity equation using commute flows data and commute time

changes from 1970-2020. Due to the staggered nature of highway construction, I exploit variation

in changes in commute times produced at different dates to estimate a dynamic gravity equation of

commuting. I follow Dube et al., (2023) and their local projection-based differences-in-differences

(LP-DiD) approach. The local projection approach is a statistical technique introduced in Jorda

(2005). The basic idea is exploit panel data to estimate dynamic impulse responses. The LP-DiD
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approach utilize local projections to estimate dynamic effects in addition to the so-called ‘clean-control’

condition. The clean control condition avoids bias by dropping ‘unclean’ observations.

What are the units of observation in this context? Commuting is a very local phenomenon. For

example, even if a trip from San Francisco to New York would take 20 hours instead of 40 hours, still

probably nobody would do this commute. In other words, flows between locations that are extremely

distant between each other are obviously insensitive to changes in driving times. This way, I define

my units of observation as all origin-destination pairs (i, j) that were at a distance of less than 5 hours

in 1960. Results are robust to changes around the 5-hours threshold.

How do I build ‘treatment’ and ‘control’ groups? In this setting, treatment comes in many waves

as highways were constructed in 1970, 1980, 1990, and 2000. For each treatment wave happening on

date s, I define a ‘treatment’ and a ‘control’ group in the following way. A pair (i, j) is said to be

‘treated’ if commute times between locations i and j were reduced for the first time at date s. A pair

(i, j) is said to be a ‘control’ pair if it is going to be treated in the future, but has not been treated

yet; or, if it was never treated at all. In this way, for treatment wave s, I drop all pairs (i, j) that were

treated for the first time before wave s. By this point, we already have a mapping between treatment

wave s, and origin-destination pairs (i, j) that belong to either the treatment or the control group of

treatment wave s. Finally, for each treatment wave s, I keep in the sample all observations at periods

that are around a treatment window: t ∈
(
s−H, s+H

)
.

I stack treatment and control groups for each treatment wave s and estimate the following regres-

sions, clustering standard errors at county-pair level:

∆h log πi,j,t = θh∆0τi,j,t + φi,t,h + φj,t,h︸ ︷︷ ︸
FE

+εi,j,t,h (70)

∆hτi,j,t = αh∆0τi,j,t + σi,t,h + σj,t,h︸ ︷︷ ︸
FE

+εi,j,t,h (71)

where the parameter of interest is θ̃h=θh/αh. This is equivalent to using the first change in commute

times ∆0τi,j,t as an instrument for changes in commute times happening at any time after the first

treatment: ∆hτi,j,t.
37 The advantage in gravity settings is that it allows the researcher to control for for

origin-decade fixed effects and destination-decade fixed effects. They account for idiosyncratic changes

in the amenity value of origin locations, and for idiosyncratic changes in productivity of destination

37I estimate equation (70) by PPML, and equation (71) by OLS
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locations.

In Figure A.11, I show the results of estimating equation (70), which is akin to a reduced form

regression. This figure reveals that when commute times rises by one minute between location i and

location j, the probability of commuting to j decreases by 1.9%, approximately. However, this impact

rises over time in absolute terms. After 40 years, the probability of commuting to j decreases by 6.0%.

This semi-elasticity of -0.060 is statistically different at a 5% level than the -0.018 estimated for the

short-run effect. Hence, changes in commute times have long-lived and growing effects on commuting

flows as cities and structures are built. This is a novel fact. Importantly, I do not detect differential

pre-trends in commute flows.

The values of these coefficients are consistent with previous estimates in the literature. For instance,

depending on the specification, Tsivanidis (2023) finds an impact between -0.025 and -0.053 over a

span of 20 years in a sample of urban planning zones within Bogotá, Colombia (an urban planning

zone is a somewhat smaller area than a typical municipality). Ahlfeldt et al. (2015), find a semi-

elasticity of -0.070 in a cross-section of origin-destination districts in Berlin. Zarate (2022) finds a

semi-elasticity between -0.028 and -0.042 in a cross-section of origin-destination municipalities within

Mexico city. Velasquez (2024) estimates a semi-elasticity between -0.047 and -0.067 in a cross-section

of origin-destination municipalities within Lima, Perú.

The main takeaways from this section are that (i) changes in commute times between counties

produce changes in commute flows, (ii) the effects are greater the longer the time horizon. Also, (iii)

while previous estimates of the semi-elasticity between commute times and commute flows are in the

same ballpark, in most studies, it is unclear whether estimates of the commuting elasticity is a long-run

elasticity, an elasticity over a fixed time horizon, or a mix of short- and long-run elasticities. My study

provides estimates of the short- and the long-run elasticities, as well as their path over time.
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Figure A.11: Dynamic Gravity Equation of Commuting

A.8 Migration Gravity Equation

TBD.
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